Skip to main content Accessibility help
×
Home

Large eddy simulation of the velocity-intermittency structure for flow over a field of symmetric dunes

  • Christopher J. Keylock (a1), Kyoungsik S. Chang (a2) and George S. Constantinescu (a3)

Abstract

Owing to their frequent occurrence in the natural environment, there has been significant interest in refining our understanding of flow over dunes and other bedforms. Recent work in this area has focused, in particular, on their shear-layer characteristics and the manner by which flow structures are generated. However, field-based studies, are reliant on single-, or multi-point measurements, rather than delimiting flow structures from the velocity gradient tensor, as is possible in numerical work. Here, we extract pointwise time series from a well-resolved large eddy simulation as a means to connect these two approaches. The at-a-point analysis technique is termed the velocity-intermittency quadrant method and relates the fluctuating, longitudinal velocity, $u_{1}^{\prime }(t)$ , to its fluctuating pointwise Hölder regularity, $\unicode[STIX]{x1D6FC}_{1}^{\prime }(t)$ . Despite the difference in boundary conditions, our results agree very well with previous experiments that show the importance, in the region above the dunes, of a quadrant 3 ( $u_{1}^{\prime }<0$ , $\unicode[STIX]{x1D6FC}_{1}^{\prime }<0$ ) flow configuration. Our higher density of sampling beneath the shear layer and close to the bedforms relative to experimental work reveals a negative correlation between $u_{1}^{\prime }(t)$ and $\unicode[STIX]{x1D6FC}_{1}^{\prime }(t)$ in this region. This consists of two distinct layers, with quadrant 4 ( $u_{1}^{\prime }>0$ , $\unicode[STIX]{x1D6FC}_{1}^{\prime }<0$ ) dominant near the wall and quadrant 2 ( $u_{1}^{\prime }<0$ , $\unicode[STIX]{x1D6FC}_{1}^{\prime }>0$ ) dominant close to the lower part of the separated shear layer. These results are consistent with a near-wall advection of vorticity into a region downstream of a temporarily foreshortened reattachment region, and the entrainment of slow moving and quiescent fluid into a faster, more turbulent shear layer. A comparison of instantaneous vorticity fields to the velocity-intermittency analysis shows how the pointwise results reflect larger-scale organisation of the flow. We illustrate this using results from two instantaneous datasets. In the former, extreme velocity-intermittency events corresponding to a foreshortened recirculation region (and high pressures on the stoss slope of the dune immediately downstream) arise, and the development of intense flow structures occurs as a consequence. In the other case, development of a ‘skimming flow’ with relatively little exchange between the inner and outer regions results in exceedances because of the coherence associated with this high velocity, high turbulence outer region. Thus, our results shed further light on the characteristics of dune flow in the near-wall region and, importantly for field-based research, show that useful information on flow structure can be obtained from single-point single velocity component measurements.

Copyright

Corresponding author

Email address for correspondence: c.keylock@sheffield.ac.uk

References

Hide All
Arnéodo, A., Manneville, S., Muzy, J. F. & Roux, S. G. 1999 Revealing a lognormal cascading process in turbulent velocity statistics with wavelet analysis. Phil. Trans. R. Soc. Lond. A 357, 24152438.
Babakaiff, S. C. & Hickin, E. J. 1996 Coherent flow structures in Squamish River Estuary, British Columbia, Canada. In Coherent Flow Structures in Open Channels (ed. Ashworth, P., Bennett, S., Best, J. L. & McLelland, S. J.), pp. 321342. Wiley.
Basu, S., Foufoula-Georgiou, E. & Porte-Agel, F. 2004 Synthetic turbulence, fractal interpolation, and large-eddy simulation. Phys. Rev. E 70 (2), 026310.
Bennett, S. J. & Best, J. L. 1995 Mean flow and turbulence structure over fixed, two-dimensional dunes: implications for sediment transport and dune stability. Sedimentology 42, 491513.
Best, J. 2005 The fluid dynamics of river dunes: a review and some future research directions. J. Geophys. Res. 110, F04S02.
Bogard, D. G. & Tiederman, W. G. 1986 Burst detection with single-point velocity measurements. J. Fluid Mech. 162, 389413.
Castro, I. P. & Haque, A. 1987 The structure of a turbulent shear layer bounding a separation region. J. Fluid Mech. 179, 439468.
Chang, K. & Constantinescu, G. 2013 Coherent structures in flow over two-dimensional dunes. Water Resour. Res. 49, 24462460.
Chang, K. & Constantinescu, G. 2015 Numerical investigation of flow and turbulence structure through and around a circular array of rigid cylinders. J. Fluid Mech. 776, 161199.
Chang, K., Constantinescu, G. & Park, S. O. 2006 Analysis of the flow and mass transfer process for the incompressible flow past an open cavity with a laminar and a fully turbulent incoming boundary layer. J. Fluid Mech. 561, 113145.
Chang, K., Constantinescu, G. & Park, S. O. 2007 The purging of a neutrally buoyant or a dense miscible contaminant from a rectangular cavity. Part II. The case of an incoming fully turbulent overflow. J. Hydraul. Engng 133, 373385.
Cherukat, P., Na, Y. & Hanratty, T. J. 1998 Direct numerical simulation of a fully developed turbulent flow over a wavy wall. Theor. Comput. Fluid Dyn. 11, 109134.
Christensen, K. T. & Adrian, R. J. 2001 Statistical evidence of hairpin vortex packets in wall turbulence. J. Fluid Mech. 431, 433443.
Dumas, S., Arnott, R. W. C. & Southard, J. B. 2005 Experiments on oscillatory-flow and combined-flow bed forms: implications for interpreting parts of the shallow-marine sedimentary record. J. Sedim. Res. 75, 501513.
Fourrière, A., Claudin, P. & Andreotti, B. 2010 Bedforms in a turbulent stream: formation of ripples by primary linear instability and of dunes by nonlinear pattern coarsening. J. Fluid Mech. 649, 287328.
Frisch, U., Bec, J. & Aurell, F. 2005 ‘Locally homogeneous turbulence’: is it an inconsistent framework? Phys. Fluids 17, 081706.
Frisch, U. & Parisi, G. 1985 The singularity structure of fully developed turbulence. In Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics (ed. Ghil, M., Benzi, R. & Parisi, G.), pp. 8488. North Holland.
Frisch, U., Sulem, P. L. & Nelkin, M. 1978 Simple dynamical model of intermittent fully developed turbulence. J. Fluid Mech. 87, 719736.
Furuichi, N., Hachiga, T. & Kumada, M. 2004 An experimental investigation of a large-scale structure of a two-dimensional backward-facing step by using advanced multipoint LDV. Exp. Fluids 36, 274281.
Ganapathisubramani, B., Longmire, E. K. & Marusic, I. 2003 Characteristics of vortex packets in turbulent boundary layers. J. Fluid Mech. 478, 3546.
Germano, M. 1992 Turbulence: the filtering approach. J. Fluid Mech. 238, 325336.
Geurts, B. J. 2003 Elements of Direct and Large-eddy Simulation, R. T. Edwards.
Grigoriadis, D. G. E., Balaras, E. & Dimas, A. A. 2009 Large-eddy simulation of unidirectional water flow over dunes. J. Geophys. Res. 114, F02022.
Günther, A. & von Rohr, P. R. 2003 Large scale structures in a developed flow over a wavy wall. J. Fluid Mech. 478, 257285.
Horiuti, K., Yanagihara, S. & Tamaki, T. 2016 Nonequilibrium state in energy spectra and transfer with implications for topological transition and SGS modelling. Fluid Dyn. Res 48 (2), 021409.
Hosokawa, I. 2007 A paradox concerning the refined similarity hypothesis of Kolmogorov for isotropic turbulence. Progr. Theor. Phys. 118, 169173.
Hudson, J. D., Dykhno, L. & Hanratty, T. J. 1996 Turbulence production in flow over a wavy wall. Exp. Fluids 20, 257265.
Hunt, J. C. R., Wray, A. A. & Moin, P.1988 Eddies, stream, and convergence zones in turbulent flows. Report No. CTR-S88. Center for Turbulence Research, Stanford University, USA.
Hurther, D., Lemmin, U. & Terray, E. A. 2007 Turbulent transport in the outer region of rough-wall open-channel flows: the contribution of large coherent shear stress structures (LC3S). J. Fluid Mech. 574, 465493.
Jackson, R. G. 1976 Sedimentological and fluid-dynamic implications of the turbulent bursting phenomenon in geophysical flows. J. Fluid Mech. 77, 531560.
Jaffard, S. 1997 Multifractal formalism for functions. 1. Results valid for all functions. SIAM J. Math. Anal. 28, 944970.
Keylock, C. J. 2008 A criterion for delimiting active periods within turbulent flows. Geophys. Res. Lett. 35, L11804.
Keylock, C. J. 2010 Characterizing the structure of nonlinear systems using gradual wavelet reconstruction. Nonlinear Process. Geophys. 17, 615632.
Keylock, C. J. 2015 Flow resistance in natural, turbulent channel flows: the need for a fluvial fluid mechanics. Water Resour. Res. 51, 43744390.
Keylock, C. J., Ganapathasubramani, B., Monty, J., Hutchins, N. & Marusic, I. 2016a The coupling between inner and outer scales in a zero pressure boundary layer evaluated using a Hölder exponent framework. Fluid Dyn. Res. 48 (2), 021405.
Keylock, C. J., Kida, S. & Peters, N. 2016b JSPS supported symposium on interscale transfers and flow topology in equilibrium and non-equilibrium turbulence (Sheffield, UK, September 2014). Fluid Dyn. Res. 48 (2), 020001.
Keylock, C. J., Lane, S. N. & Richards, K. S. 2014a Quadrant/octant sequencing and the role of coherent structures in bed load sediment entrainment. J. Geophys. Res. 119, 264286.
Keylock, C. J., Nishimura, K. & Peinke, J. 2012 A classification scheme for turbulence based on the velocity-intermittency structure with an application to near-wall flow and with implications for bedload transport. J. Geophys. Res. 117, F01037.
Keylock, C. J., Singh, A. & Foufoula-Georgiou, E. 2013 The influence of bedforms on the velocity-intermittency structure of turbulent flow over a gravel bed. Geophys. Res. Lett. 40 (1–5), 13511355.
Keylock, C. J., Singh, A., Venditti, J. G. & Foufoula-Georgiou, E. 2014b Robust classification for the joint velocity-intermittency structure of turbulent flow over fixed and mobile bedforms. Earth Surf. Process. Landf. 39, 17171728.
Keylock, C. J., Stresing, R. & Peinke, J. 2015 Gradual wavelet reconstruction of the velocity increments for turbulent wakes. Phys. Fluids 27, 025104.
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 299303.
Kolmogorov, A. N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence in a viscous, incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 8285.
Kolwankar, K. M. & Lévy Véhel, J. 2002 A time domain characterisation of the fine local regularity of functions. J. Fourier Anal. Applics. 8, 319334.
Kostaschuk, R. 2000 A field study of turbulence and sediment dynamics over subaqueous dunes with flow separation. Sedimentology 47, 519531.
Kostaschuk, R. & Villard, P. 1996 Flow and sediment transport over large subaqueous dunes: Fraser River, Canada. Sedimentology 43, 849863.
Kruse, N., Günther, A. & von Rohr, P. R. 2003 Dynamics of large-scale structures in turbulent flow over a wavy wall. J. Fluid Mech. 485, 8796.
Lancaster, N., Nickling, W. G., Neuman, C. K. M. & Wyatt, V. E. 1996 Sediment flux and airflow on the stoss slope of a barchan dune. Geomorphology 17, 5562.
Lu, S. S & Willmarth, W. W. 1973 Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J. Fluid Mech. 60, 481511.
Mahesh, K., Constantinescu, S. G. & Moin, P. 2004 A numerical method for large eddy simulation in complex geometries. J. Comput. Phys. 197, 215240.
Meneveau, C. 2012 Germano identity-based subgrid scale modeling: a brief survey of variations on a fertile theme. Phys. Fluids 24, 121301.
Meneveau, C. & Sreenivasan, K. 1991 The multifractal nature of turbulent energy-dissipation. J. Fluid Mech. 224, 429484.
Muzy, J. F., Bacry, E. & Arnéodo, A. 1991 Wavelets and multifractal formalism for singular signals: application to turbulence data. Phys. Rev. Lett. 67, 35153518.
Nakagawa, H. & Nezu, I. 1977 Prediction of the contributions to the Reynolds stress from bursting events in open channel flows. J. Fluid Mech. 80, 99128.
Nelson, J. M., McLean, S. R. & Wolfe, S. R. 1993 Mean flow and turbulence fields over 2-dimensional bed forms. Water Resour. Res. 29, 39353953.
Omidyeganeh, M. & Piomelli, U. 2011 Large-eddy simulation of two-dimensional dunes in a steady, unidirectional flow. J. Turbul. 12 (42), 131.
Omidyeganeh, M. & Piomelli, U. 2013a Large-eddy simulation of three-dimensional dunes in a steady, unidirectional flow. Part 1. Turbulence statistics. J. Fluid Mech. 721, 454483.
Omidyeganeh, M. & Piomelli, U. 2013b Large-eddy simulation of three-dimensional dunes in a steady, unidirectional flow. Part 2. Flow structures. J. Fluid Mech. 734, 509534.
Osborne, P. D. & Rooker, G. A. 1999 Sand re-suspension events in a high energy infragravity swash zone. J. Coast. Res. 15, 7486.
Parsons, D. R., Best, J. L., Orfeo, O., Hardy, R. J., Kostaschuk, R. & Lane, S. N. 2005 Morphology and flow fields of three-dimensional dunes, Rio Parana, Argentina: results from simultaneous multibeam echo sounding and acoustic Doppler current profiling. J. Geophys. Res. 110, F04S03.
Parsons, D. R., Walker, I. J. & Wiggs, G. F. S. 2004 Numerical modelling of flow structures over idealized transverse aeolian dunes of varying geometry. Geomorphology 59, 149164.
Pierce, C. D. & Moin, P.2001 Progress-variable approach for large eddy simulation of turbulent combustion. Tech. Rep. TF-80. Mech. Eng. Dep., Stanford University, USA.
Praskovsky, A. A., Gledzer, E. B., Karyakin, M. Y. & Zhou, Y. 1993 The sweeping decorrelation hypothesis and energy-inertial scale interaction in high Reynolds number flow. J. Fluid Mech. 248, 493511.
Renner, C., Peinke, J. & Friedrich, R. 2001 Experimental indications for Markov properties of small-scale turbulence. J. Fluid Mech. 433, 383409.
Richardson, L. F. 1922 Weather Prediction by Numerical Process. Cambridge University Press.
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.
Sagaut, P. 2002 Large Eddy Simulation for Incompressible Flows. Springer.
Salvetti, M. V., Damiani, R. & Beuxm, F. 2001 Three-dimensional, coarse large-eddy simulations of the flow above two-dimensional sinusoidal waves. Intl J. Numer. Meth. Fluids 35, 617642.
Scotti, A. & Meneveau, C. 1999 A fractal model for large eddy simulation of turbulent flow. Physica D 127, 198232.
Seuret, S. & Lévy Véhel, J. 2003 A time domain characterization of 2-microlocal spaces. J. Fourier Anal. Applics. 9, 473495.
She, Z. S. & Leveque, E. 1994 Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 72, 336339.
Shugar, D. H., Kostaschuk, R., Best, J. L., Parsons, D. R., Lane, S. N., Orfeo, O. & Hardy, R. J. 2010 On the relationship between flow and suspended sediment transport over the crest of a sand dune, Rio Parana, Argentina. Sedimentology 57, 252272.
Singh, A., Fienberg, K., Jerolmack, D., Marr, J. & Foufoula-Georgiou, E. 2009 Experimental evidence for statistical scaling and intermittency in sediment transport rates. J. Geophys. Res. 114, F01025.
Singh, A., Porté-Agel, F. & Foufoula-Georgiou, E. 2010 On the influence of gravel bed dynamics on velocity power spectra. Water Resour. Res. 46, W04509.
Stoesser, T., Braun, C., Garcia-Villalba, M. & Rodi, W. 2008 Turbulent structures in flow over two dimensional dunes. J. Hydraul. Engng 143, 4255.
Stresing, R. & Peinke, J. 2010 Towards a stochastic multi-point description of turbulence. New J. Phys. 12, 103046.
Stresing, R., Peinke, J., Seoud, S. & Vassilicos, J. 2010 Defining a new class of turbulent flows. Phys. Rev. Lett. 104, 194501.
Titus, T., Zimbelman, J. & Radebaugh, J. 2015 The importance of dunes on a variety of planetary surfaces. Eos 96 (19), 4.
Vassilicos, J. C. 2015 Dissipation in turbulent flows. Annu. Rev. Fluid Mech. 47, 95114.
Venditti, J. G. & Bennett, S. J. 2000 Spectral analysis of turbulent flow and suspended sediment transport over fixed dunes. J. Geophys. Res. 105 (C9), 2203522047.
Wiggs, G. F. S., Livingstone, I. & Warren, A. 1996 The role of streamline curvature in sand dune dynamics: evidence from field and wind tunnel measurements. Geomorphology 17, 2946.
Zedler, E. A. & Street, R. L. 2001 Large-eddy simulation of sediment transport: currents over ripples. J. Hydraul. Engng 127, 444452.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

Large eddy simulation of the velocity-intermittency structure for flow over a field of symmetric dunes

  • Christopher J. Keylock (a1), Kyoungsik S. Chang (a2) and George S. Constantinescu (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.