Skip to main content
    • Aa
    • Aa

Large-deformation analysis of the elastic recoil of fibre layers in a Brinkman medium with application to the endothelial glycocalyx


There is wide interest in the role of the endothelial surface layer (ESL) in transmitting blood shear stress to the intracellular cytoskeleton of the endothelial cell. However, very little is known about the mechanical properties of the glycocalyx or the flexural rigidity of the core proteins that comprise it. Vink, Duling & Spaan (FASEB J., vol. 13, 1999, p. A 11) measured the time-dependent restoration of the ESL after it had been nearly completely compressed by the passage of a white blood cell (WBC) in a tightly fitting capillary. Using this initial experiment, Weinbaum et al. (Proc. Natl. Acad. Sci. USA, vol. 100, 2003, p. 7988) predicted that the core proteins have a flexural rigidity EI of 700 pN nm$^{2}$, which is $\sim$1/20 the measured value for an actin filament. However, their analysis assumes small deflections and only the fibre motion is considered. In the present paper we report additional experiments and apply large-deformation theory for ‘elastica’ to describe the restoration of the fibres in a Brinkman medium which absorbs fluid as the ESL expands. We find that there are two phases in the fibre recoil: an initial phase for large compressions where the ESL thickness is $<0.36$ its undisturbed thickness, and the ends of the fibres overlap and are parallel to the capillary wall; and a second phase where the fibres assume a shape that is close to the solutions for an elastic bar with linearly distributed vertical loading. The predicted time-dependent change in thickness of the ESL provides remarkably good agreement with experiment and yields an estimate of 490 pN nm$^{2}$ for the flexural rigidity EI of the core protein fibres, which is unexpectedly close to that predicted by the linear theory in Weinbaum et al. (2003).

Corresponding author
Author to whom correspondence should be addressed: Department of Biomedical Engineering, The City College of New York, 138th Street at Convent Avenue, New York, NY 10031,
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 17 *
Loading metrics...

Abstract views

Total abstract views: 84 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 28th May 2017. This data will be updated every 24 hours.