Skip to main content Accessibility help
×
Home

Large-eddy simulations of a round jet in crossflow

  • LESTER L. YUAN (a1), ROBERT L. STREET (a1) and JOEL H. FERZIGER (a1) (a2)

Abstract

This paper reports on a series of large-eddy simulations of a round jet issuing normally into a crossflow. Simulations were performed at two jet-to-crossflow velocity ratios, 2.0 and 3.3, and two Reynolds numbers, 1050 and 2100, based on crossflow velocity and jet diameter. Mean and turbulent statistics computed from the simulations match experimental measurements reasonably well. Large-scale coherent structures observed in experimental flow visualizations are reproduced by the simulations, and the mechanisms by which these structures form are described. The effects of coherent structures upon the evolution of mean velocities, resolved Reynolds stresses, and turbulent kinetic energy along the centreplane are discussed. In this paper, the ubiquitous far-field counter-rotating vortex pair is shown to originate from a pair of quasi-steady ‘hanging’ vortices. These vortices form in the skewed mixing layer that develops between jet and crossflow fluid on the lateral edges of the jet. Axial flow through the hanging vortex transports vortical fluid from the near-wall boundary layer of the incoming pipe flow to the back side of the jet. There, the hanging vortex encounters an adverse pressure gradient and breaks down. As this breakdown occurs, the vortex diameter expands dramatically, and a weak counter-rotating vortex pair is formed that is aligned with the jet trajectory.

Copyright

MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed