Skip to main content
×
Home
    • Aa
    • Aa

Large-scale-vortex dynamos in planar rotating convection

  • Céline Guervilly (a1), David W. Hughes (a1) and Chris A. Jones (a1)
Abstract

Several recent studies have demonstrated how large-scale vortices may arise spontaneously in rotating planar convection. Here, we examine the dynamo properties of such flows in rotating Boussinesq convection. For moderate values of the magnetic Reynolds number ( $100\lesssim Rm\lesssim 550$ , with $Rm$ based on the box depth and the convective velocity), a large-scale (i.e. system-size) magnetic field is generated. The amplitude of the magnetic energy oscillates in time, nearly out of phase with the oscillating amplitude of the large-scale vortex. The large-scale vortex is disrupted once the magnetic field reaches a critical strength, showing that these oscillations are of magnetic origin. The dynamo mechanism relies on those components of the flow that have length scales lying between that of the large-scale vortex and the typical convective cell size; smaller-scale flows are not required. The large-scale vortex plays a crucial role in the magnetic induction despite being essentially two-dimensional; we thus refer to this dynamo as a large-scale-vortex dynamo. For larger magnetic Reynolds numbers, the dynamo is small scale, with a magnetic energy spectrum that peaks at the scale of the convective cells. In this case, the small-scale magnetic field continuously suppresses the large-scale vortex by disrupting the correlations between the convective velocities that allow it to form. The suppression of the large-scale vortex at high $Rm$ therefore probably limits the relevance of the large-scale-vortex dynamo to astrophysical objects with moderate values of $Rm$ , such as planets. In this context, the ability of the large-scale-vortex dynamo to operate at low magnetic Prandtl numbers is of great interest.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

J. Aubert 2005 Steady zonal flows in spherical shell dynamos. J. Fluid Mech. 542, 5367.

N. A. Bakas  & P. J. Ioannou 2014 A theory for the emergence of coherent structures in beta-plane turbulence. J. Fluid Mech. 740, 312341.

F. Cattaneo , T. Emonet  & N. O. Weiss 2003 On the interaction between convection and magnetic fields. Astrophys. J. 588, 11831198.

F. Cattaneo  & D. W. Hughes 2006 Dynamo action in a rotating convective layer. J. Fluid Mech. 553, 401418.

K. L. Chan 2007 Rotating convection in f-boxes: faster rotation. Astron. Nachr. 328, 10591061.

S. Childress  & A. M. Soward 1972 Convection-driven hydromagnetic dynamo. Phys. Rev. Lett. 29, 837839.

U. R. Christensen  & J. Aubert 2006 Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys. J. Intl 166, 97114.

N. C. Constantinou , B. F. Farrell  & P. J. Ioannou 2016 Statistical state dynamics of jet/wave coexistence in barotropic beta-plane turbulence. J. Atmos. Sci. 73 (5), 22292253.

A. Courvoisier , D. W. Hughes  & S. M. Tobias 2009 Mean induction and diffusion: the influence of spatial coherence. J. Fluid Mech. 627, 403421.

B. Favier , L. J. Silvers  & M. R. E. Proctor 2014 Inverse cascade and symmetry breaking in rapidly-rotating Boussinesq convection. Phys. Fluids 26 (9), 096605.

B. Galperin , S. Sukoriansky  & N. Dikovskaya 2010 Geophysical flows with anisotropic turbulence and dispersive waves: flows with a 𝛽-effect. Ocean Dyn. 60, 427441.

T. Gastine  & J. Wicht 2012 Effects of compressibility on driving zonal flow in gas giants. Icarus 219, 428442.

C. Guervilly , D. W. Hughes  & C. A. Jones 2014 Large-scale vortices in rapidly rotating Rayleigh-Bénard convection. J. Fluid Mech. 758, 407435.

M. Heimpel , J. Aurnou  & J. Wicht 2005 Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Nature 438, 193196.

K. Hori , J. Wicht  & U. R. Christensen 2010 The effect of thermal boundary conditions on dynamos driven by internal heating. Phys. Earth Planet. Inter. 182, 8597.

D. W. Hughes  & F. Cattaneo 2008 The alpha-effect in rotating convection: size matters. J. Fluid Mech. 594, 445461.

D. W. Hughes  & M. R. E. Proctor 2013 The effect of velocity shear on dynamo action due to rotating convection. J. Fluid Mech. 717, 395416.

C. A. Jones 2000 Convection-driven geodynamo models. Phil. Trans. R. Soc. Lond. A 358, 873897.

P. J. Käpylä , M. J. Mantere  & T. Hackman 2011 Starspots due to large-scale vortices in rotating turbulent convection. Astrophys. J. 742, 3441.

P. Olson , U. Christensen  & G. A. Glatzmaier 1999 Numerical modeling of the geodynamo: mechanisms of field generation and equilibration. J. Geophys. Res. 104, 1038310404.

A. M. Rubio , K. Julien , E. Knobloch  & J. B. Weiss 2014 Upscale energy transfer in three-dimensional rapidly rotating turbulent convection. Phys. Rev. Lett. 112, 144501.

A. M. Soward 1974 A convection-driven dynamo: I. The weak field case. Phil. Trans. R. Soc. Lond. A 275 (1256), 611646.

S. Stellmach , M. Lischper , K. Julien , G. Vasil , J. S. Cheng , A. Ribeiro , E. M. King  & J. M. Aurnou 2014 Approaching the asymptotic regime of rapidly rotating convection: boundary layers versus interior dynamics. Phys. Rev. Lett. 113 (25), 254501.

F. Takahashi , M. Matsushima  & Y. Honkura 2008 Scale variability in convection-driven mhd dynamos at low Ekman number. Phys. Earth Planet. Inter. 167 (3), 168178.

A. Tilgner 2012 Transitions in rapidly rotating convection driven dynamos. Phys. Rev. Lett. 109 (24), 248501.

S. M. Tobias , P. H. Diamond  & D. W. Hughes 2007 𝛽-plane magnetohydrodynamic turbulence in the solar tachocline. Astrophys. J. Lett. 667 (1), L113.

R. K. Yadav , T. Gastine , U. R. Christensen , L. D. V. Duarte  & A. Reiners 2016 Effect of shear and magnetic field on the heat-transfer efficiency of convection in rotating spherical shells. Geophys. J. Intl 204 (2), 11201133.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 4
Total number of PDF views: 127 *
Loading metrics...

Abstract views

Total abstract views: 236 *
Loading metrics...

* Views captured on Cambridge Core between 20th February 2017 - 21st September 2017. This data will be updated every 24 hours.