Skip to main content Accessibility help

Lateral capillary interaction between particles protruding from a spherical liquid layer

  • P. A. Kralchevsky (a1), V. N. Paunov (a1) and Kuniaki Nagayama (a2)

The lateral capillary interaction between two particles immersed in a spherical thin liquid film is investigated. The interfacial shape, the lateral capillary force and the interparticle energy are calculated by using the numerical solution of the linearized Laplace equation of capillarity. Orthogonal bipolar coordinates on a sphere (inducing biconical coordinates in space) are introduced as a helpful instrument for solving this problem and other problems of similar geometry. We consider two types of boundary conditions at the particle surfaces: fixed contact angle and fixed contact line. We established that for particles of fixed contact angle the capillary interaction energy depends monotonically on the interparticle distance whereas for particles of fixed contact line the interaction energy exhibits a maximum. The numerical results show that in both cases the capillary interaction is much larger than the thermal energy kT and can induce aggregation and ordering of submicrometre particles. These theoretical findings can be important for understanding the properties of Pickering emulsions (stabilized by particles) and liposomes or biomembranes containing incorporated membrane proteins.

Hide All
Brand, L. 1947 Vector and Tensor Analysis. Wiley.
Bussel, S. J., Koch, D. L. & Hammer, D. A. 1992 The resistivity and mobility functions for a model system of two equal-sized proteins in a lipid bilayer. J Fluid Mech. 243, 679697.
Camoin, C., Roussel, J. F., Faure, R. & Blanc, R. 1987 Mesure des forces d'attraction entre sphéres partiellment immergées: Influence des interfaces. Europhys. Lett. 3, 449457.
Chan, D. Y. C., Henry, J. D. & White, L. R. 1981 The interaction of colloidal particles collected at fluid interfaces. J. Colloid Interface Sci. 79, 410418.
Constantinides, A. 1987 Applied Numerical Methods with Personal Computers. McGraw-Hill.
Denkov, N. D., Velev, O. D., Kralchevsky, P. A., Ivanov, I. B., Yoshimura, H. & Nagayama, K. 1992 Mechanism of formation of two-dimensional crystals from latex particles on substrata. Langmuir 8, 31833190.
Denkov, N. D., Velev, O. D., Kralchevsky, P. A., Ivanov, I. B., Yoshimura, H. & Nagayama, K. 1993 Dynamics of two-dimensional crystallization. Nature 361, 26.
Derjaguin, B. V., Churaev, N. V. & Muller, V. M. 1987 Surface Forces. Plenum.
Dukhin, S. S., Ruliov, N. N. & Dimitrov, D. S. 1986 Coagulation and Dynamics of Thin Films. Naukova Dumka, Kiev (in Russian).
Hockney, R. W. & Eastwood, J. W. Computer Simulation Using Particles. McGraw-Hill.
Israelachvili, J. N. 1977 Refinement of the fluid-mosaic model of membrane structures. Biochim. Biophys. Acta 469, 221225.
Israelachvili, J. N. 1992 Intermolecular and Surface Forces, 2nd edn. Academic.
Ivanov, I. B. & Toshev, B. V. 1975 Thermodynamics of thin liquid films: II Film thickness and its relations to the surface tension and the contact angle. Colloid Polymer Sci. 253, 593602.
Korn, G. A. & Korn, T. M. 1968 Mathematical Handbook. McGraw-Hill.
Kralchevsky, P. A. & Ivanov, I. B. 1990 Micromechanical description of curved interfaces, thin films and membranes. Film surface tension, disjoining pressure and interfacial stress balances. J. Colloid Interface Sci. 137, 234252.
Kralchevsky, P. A., Paunov, V. N., Ivanov, I. B. & Nagayama, K. 1992 Capillary meniscus interaction between colloidal particles attached to a liquid-fluid interface. J. Colloid Interface Sci. 151, 7994.
Kralchevsky, P. A., Paunov, V. N., Denkov, N. D., Ivanov, I. B. & Nagayama, K. 1993 Energetical and force approaches to the capillary interactions between particles attached to a liquid-fluid interface. J. Colloid Interface Sci. 155, 420437.
Kralchevsky, P. A. & Nagayama, K. 1994 Capillary forces between colloidal particles. Langmuir 10, 2336.
Landau, L. D. & Lifshitz, E. M. 1984 Fluid Mechanics. Pergamon.
Levine, S. & Bowen, B. D. 1991 Capillary interaction of spherical particles adsorbed on the surface of an oil/water droplet stabilized by the particles. Colloids Surfaces 59, 377386.
McConnell, A. J. 1957 Application of Tensor Analysis. Dover.
Nagayama, K. 1994 Fabrication of protein crystalline films on mercury. Materials Sci Engng C1, 8794.
Nicolson, M. M. 1949 The interaction between floating particles. Proc. Comb. Phil. Soc. 45, 288295.
Paunov, V. N., Kralchevsky, P. A., Denkov, N. D., Ivanov, I. B. & Nagayama, K. 1992 Capillary meniscus interaction between a microparticle and a wall. Colloids Surfaces 67, 119138.
Paunov, V. N., Kralchevsky, P. A., Denkov, N. D. & Nagayama, K. 1993 Lateral capillary forces between floating submillimeter particles. J. Colloid Interface Sci. 157, 100112.
Petrov, A. G. & Bivas, I. 1984 Elastic and flexoelastic aspects of out-of-plane fluctuations in biological and model membranes. Prog. Surface Sci. 16, 389511.
Tadros, Th. F. & Vincent, B. 1983 In Encyclopedia of Emulsion Technology (ed. P. Becher), vol. 1, p. 129. M. Dekker.
Veleve, O. D., Denkov, N. D., Kralchevsky, P. A., Paunov, V. N. & Nagayama, K. 1993 Direct measurements of lateral capillary forces. Langmuir 9, 37023709.
Weatherburn, C. E. 1939 Differential Geometry of Three Dimensions. Cambridge University Press.
Yoshimura, H., Matsumoto, M., Endo, S. & Nagayama, K. 1990 Two-dimensional crystalization of proteins on mercury. Ultramicroscopy 32, 265271.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed