Skip to main content
×
Home
    • Aa
    • Aa

Lattice-Boltzmann simulation of grid-generated turbulence

  • L. DJENIDI (a1)
Abstract

The lattice-Boltzmann method (LBM) is used to carry out a direct numerical simulation (DNS) of grid-generated turbulence with the view to improve comparison between experimental and numerical results on approximate isotropic turbulence. The grid is made up of four by four floating flat square elements in an aligned arrangement. The Reynolds number based on the Taylor microscale is about 40 at a distance of 70 times the separation between the elements downstream of the grid; this value is comparable to that of many experiments.

While the results compare relatively well with existing experimental data on grid turbulence (grid made up of bars), they highlight the importance of the mesh resolution of the simulation and computational domain size in the decay of turbulence. For example, while a power-law decay could be identified, at least over a short distance, its decay exponent proves to be difficult to determine with good accuracy. This points out the need for simulations (and perhaps experiments too) where all scales are properly solved before conclusions can be drawn.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 34 *
Loading metrics...

Abstract views

Total abstract views: 98 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 27th May 2017. This data will be updated every 24 hours.