Skip to main content
×
Home
    • Aa
    • Aa

Leading-edge receptivity by adjoint methods

  • FLAVIO GIANNETTI (a1) (a2) and PAOLO LUCHINI (a3)
Abstract

The properties of adjoint operators and the method of composite expansion are used to study the generation of Tollmien–Schlichting (TS) waves in the leading-edge region of an incompressible, flat-plate boundary layer. Following the classical asymptotic approach, the flow field is divided into an initial receptivity region, where the unsteady motion is governed by the linearized unsteady boundary-layer equation (LUBLE), and a downstream linear amplification area, where the evolution of the unstable mode is described by the classical Orr–Sommerfeld equation (OSE). The large $\bar{x}$ behaviour of the LUBLE is analysed using a multiple-scale expansion which leads to a set of composite differential equations uniformly valid in the wall-normal direction. These are solved numerically as an eigenvalue problem to determine the local properties of the Lam and Rott eigensolutions. The receptivity coefficient for an impinging acoustic wave is extracted by projecting the numerical solution of the LUBLE onto the adjoint of the Lam and Rott eigenfunction which, further downstream, turns into an unstable TS wave. In the linear amplification region, the main characteristics of the instability are recovered by using a multiple-scale expansion of the Navier–Stokes equations and solving numerically the derived eigenvalue problems. A new matching procedure, based on the properties of the adjoint Orr–Sommerfeld operator, is then used to check the existence and the extent of an overlapping domain between the two asymptotic regions. Results for different frequencies are discussed.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 34 *
Loading metrics...

Abstract views

Total abstract views: 95 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd September 2017. This data will be updated every 24 hours.