Skip to main content
    • Aa
    • Aa

Lee waves in stratified flows with simple harmonic time dependence

  • T. H. Bell (a1)

The process of internal gravity wave generation by the simple harmonic flow (U = U0, cos ω0t) of a stably stratified fluid (Brunt–Väisälä frequency N) over an obstacle is investigated in some detail. Attention is primarily directed to the behaviour of the solution in various limiting cases, and to estimating the flux of energy into the internal wave field. In general, waves are generated not only at the fundamental frequency ω0, but also at all of its harmonics. But, for values of ω0/N greater than about one half, the waves of fundamental frequency are dominant. For values of ω0/N, less than about one half, the quasi-static approximation, in which the problem is considered as a slowly-varying version of the classical lee wave problem, is found to provide a viable estimate for the wave field. The general solution is found to compare favourably with the limited available experimental data.

Hide All
Baines, P. G. 1973 The generation of internal tides by flat-bump topography. Deep-Sea Res., 20, 179205.
Bell, T. H. 1973 Internal wave generation by deep ocean flows over abyssal topography. Ph.D. thesis, The Johns Hopkins University.
Bretherton, F. P. 1971 The general linearized theory of wave propagation. Mathematical Problems in the Geophysical Sciences (ed. W. H. Reid), vol. 1, pp. 61102. Am. Math. Soc.
Browand, F. K. & Winant, C. D. 1972 Blocking ahead of a cylinder moving in a strati-fied fluid: an experiment. Geophys. Fluid Dyn., 4, 2953.
Budden, K. G. 1961 Radio Waves in the Ionosphere. Cambridge University Press.
Cartwright, D. E. 1959 On submarine sand — waves and tidal lee-waves. Proc. Roy. Soc. A 253, 218241.
Cox, C. & Sandstrom, H. 1962 Coupling of internal and surface waves in water of variable depth. J. Ocean. Soc. Japan, 20, 499513.
Erdélyi, A., Magnus, W., Oberhettincer, F. & Tricomi, F. G. 1953 Higher Transcendental Functions, vol. 1. McGraw-Hill.
Erdélyi, A., Magnus, W., Oberhettinger, F. & Tricomi, F. G. 1954 Tables of Integral Transforms, vol. 1. McGraw-Hill.
Görtler, H. 1943 Über eine Schwingungserscheinung in Flussigkeiten mit stabiler
Dichteschichtung. 2. angew. Math. Mech., 23 6571.
Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.
Hurley, D. G. 1969 The emission of internal waves by vibrating cylinders. J. Fluid Mech.
Lee, C. Y. 1972 Long nonlinear internal waves and quasi — steady lee waves. Ph.D. thesis, Massachusetts Institute of Technology.
Lighthill, M. J. 1967 On waves generated in dispersive systems by travelling forcing effects, with applications to the dynamics of rotating fluids. J. Fluid Mech., 27, 725752.
Lilly, D.K. 1972 Wave momentumflux: a GARP problem. Bull. Arm Meteor. Soc., 53, 1723.
Miles, J. W. 1969 Waves and wave drag in stratified flows. Applied Mechanics: Proc. 12th Int. Cong. Appl. Mech. (ed. M. Hetenyi & W. G. Vincenti), pp. 5076. Springer.
Miles, J. W. 1971 Upstream boundary layer separation in stratified flow. J. Fluid Mech., 48, 791800.
Miles, J. W. & Huppert, H. E. 1969 Lee waves in a stratified flow. Part 4. Perturbation approximations. J. Fluid Mech. 35, 497525.
Mork, M. 1968 On the formation of internal waves caused by tidal flow over a bottom irregularity. Geophys. Inst. Univ. Bergen.
Mowbray, D. E. & Rarity, B. S. H. 1967 A theoretical and experimental investigation of the phase configuration of internal waves of small amplitude in a density stratified liquid. J. Fluid Mech., 28, 116.
Rattray, M., Dworski, J. & Kovala, P. 1969 Generation of long internal waves a t the continental slope. Deep-Sea Res. (Suppl.), 16, 179195.
Watson, G. N. 1966 A Treatise on the Theory of Bessel Functions. 2nd edn. Cambridge University Press.
Zeytounian, R. Kh. 1969a Phénomènes d'ondes dans les écoulements stationnaires d'un fluide stratifié non visqueux: I. Modéles théoriques. J. Mécanique, 8, 239263.
Zeytounian, R. Kh. 1969b Phénomènes d'ondes dans les Bcoulemerits stationnaires d'un fluide stratifié non visqueux: II. Applications météorologiques: ondes de refief dam une atmosphère barocline. J. Mécanique, 8, 335355.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 64 *
Loading metrics...

Abstract views

Total abstract views: 203 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st October 2017. This data will be updated every 24 hours.