Skip to main content
×
Home
    • Aa
    • Aa

Leidenfrost drops cooling surfaces: theory and interferometric measurement

  • Michiel A. J. van Limbeek (a1) (a2), Martin H. Klein Schaarsberg (a1) (a2), Benjamin Sobac (a3), Alexey Rednikov (a3), Chao Sun (a1) (a4) (a2), Pierre Colinet (a3) and Detlef Lohse (a1) (a2)...
Abstract

When a liquid drop is placed on a highly superheated surface, it can be levitated by its own vapour. This remarkable phenomenon is referred to as the Leidenfrost effect. The thermally insulating vapour film results in a severe reduction of the heat transfer rate compared to experiments at lower surface temperatures, where the drop is in direct contact with the solid surface. A commonly made assumption is that this solid surface is isothermal, which is at least questionable for materials of low thermal conductivity, resulting in an overestimation of the surface temperature and heat transfer for such systems. Here we aim to obtain more quantitative insight into how surface cooling affects the Leidenfrost effect. We develop a technique based on Mach–Zehnder interferometry to investigate the surface cooling of a quartz plate by a Leidenfrost drop. The three-dimensional plate temperature field is reconstructed from interferometric data by an Abel inversion method using a basis function expansion of the underlying temperature field. By this method we are able to quantitatively measure the local cooling inside the plate, which can be as strong as 80 K. We develop a numerical model which shows good agreement with experiments and enables extending the analysis beyond the experimental parameter space. Based on the numerical and experimental results we quantify the effect of surface cooling on the Leidenfrost phenomenon. By focusing on the role of the solid surface we provide new insights into the Leidenfrost effect and demonstrate how to adjust current models to account for non-isothermal solids and use previously obtained isothermal scaling laws for the neck thickness and evaporation rate.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Leidenfrost drops cooling surfaces: theory and interferometric measurement
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Leidenfrost drops cooling surfaces: theory and interferometric measurement
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Leidenfrost drops cooling surfaces: theory and interferometric measurement
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Email address for correspondence: m.a.j.vanlimbeek@utwente.nl
References
Hide All
AzizS. D. & ChandraS. 2000 Impact, recoil and splashing of molten metal droplets. Intl J. Heat Mass Transfer 43 (16), 28412857.
BaumeisterK. & SimonF. 1973 Leidenfrost temperature – its correlation for liquid metals, cryogens, hydrocarbons, and water. Trans. ASME J. Heat Transfer 95 (2), 166173.
BernardinJ. & MudawarI. 1999 The Leidenfrost point: experimental study and assessment of existing models. Trans. ASME J. Heat Transfer 121, 894903.
BianceA.-L., ClanetC. & QuéréD. 2003 Leidenfrost drops. Phys. Fluids 15 (6), 16321637.
BoerhaaveH. 1732 Elementa Chemiae. Lugdunum Batavorom.
CannyJ. 1986 A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8 (6), 679698.
CiddorP. E. 1996 Refractive index of air: new equations for the visible and near infrared. Appl. Opt. 35 (9), 15661573.
DribinskiV., OssadtchiA., MandelshtamV. A. & ReislerH. 2002 Reconstruction of Abel-transformable images: the Gaussian basis-set expansion Abel transform method. Rev. Sci. Instrum. 73 (7), 2634.
EmmersonG. 1975 The effect of pressure and surface material on the Leidenfrost point of discrete drops of water. Intl J. Heat Mass Transfer 18 (3), 381386.
HerráezM. A., BurtonD. R., LalorM. J. & GdeisatM. A. 2002 Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path. Appl. Opt. 41 (35), 74377444.
JacksonJ. 1998 Boundary value problems in electrostatics II. In Classical Electrodynamics, 2nd edn. chap. 3, Wiley.
KimH., TruongB., BuongiornoJ. & HuL.-W. 2011 On the effect of surface roughness height, wettability, and nanoporosity on Leidenfrost phenomena. Appl. Phys. Lett. 98 (8), 083121.
KreisT. 1986 Digital holographic interference-phase measurement using the Fourier-transform method. JOSA A 3 (6), 847855.
KreisT. 2005 Handbook of Holographic Interferometry. Wiley-VCH.
LeidenfrostJ. G. 1756 De aquae communis nonnullis qualitatibus tractatus. Ovenius.
van LimbeekM. A. J., ShirotaM., SleutelP., SunC., ProsperettiA. & LohseD. 2016 Vapour cooling of poorly conducting hot substrates increases the dynamic leidenfrost temperature. Intl J. Heat Mass Transfer 97, 101109.
MachL. 1892 Ueber einen Interferenzrefraktor. Zeitschrift für Instrumentenkunde 12, 8993.
MalitsonI. 1965 Interspecimen comparison of the refractive index of fused silica. JOSA 55 (10), 12051209.
MaquetL., SobacB., Darbois-TexierB., DuchesneA., BrandenbourgerM., RednikovA., ColinetP. & DorboloS. 2016 Leidenfrost drops on a heated liquid pool. Phys. Rev. Fluids 1, 053902.
MaS., GaoH. & WuL. 2008 Modified Fourier–Hankel method based on analysis of errors in Abel inversion using Fourier transform techniques. Appl. Opt. 47 (9), 1350.
MatthysD., GilbertJ., DudderarT. & KoenigK. 1988 A windowing technique for the automated analysis of holo-interferograms. Opt. Lasers Engng 8, 123136.
NairH., StaatH. J., TranT., van HouseltA., ProsperettiA., LohseD. & SunC. 2014 The Leidenfrost temperature increase for impacting droplets on carbon-nanofiber surfaces. Soft Matt. 10 (13), 21022109.
PlotkowskiP., HungY. Y. & GerhartG. 1985 Improved fringe carrier technique for unambiguous determination of holographically recorded displacements. Opt. Engng 24 (5), 754756.
PomeauY., Le BerreM., CelestiniF. & FrischT. 2012 The leidenfrost effect: from quasi-spherical droplets to puddles. C. R. Méc. 340 (11), 867881.
QuéréD. 2013 Leidenfrost dynamics. Annu. Rev. Fluid Mech. 45, 197215.
ShirotaM., van LimbeekM. A. J., SunC., ProsperettiA. & LohseD. 2016 Dynamic leidenfrost effect: relevant time and length scales. Phys. Rev. Lett. 116, 064501.
SnoeijerJ. H., BrunetP. & EggersJ. 2009 Maximum size of drops levitated by an air cushion. Phys. Rev. E 79, 036307.
SobacB., RednikovA., DorboloS. & ColinetP. 2014 Leidenfrost effect: accurate drop shape modeling and refined scaling laws. Phys. Rev. E 90 (5), 053011.
SobacB., RednikovA., DorboloS. & ColinetP. 2015a Leidenfrost drops. In Droplet Wetting and Evaporation (ed. Brutin D.), chap. 7, pp. 8599. Academic.
SobacB., TalbotP., HautB., RednikovA. & ColinetP. 2015b A comprehensive analysis of the evaporation of a liquid spherical drop. J. Colloid Interface Sci. 438, 306317.
StaatH. J., TranT., GeerdinkB., RibouxG., SunC., GordilloJ. M. & LohseD. 2015 Phase diagram for droplet impact on superheated surfaces. J. Fluid Mech. 779, R3.
TakedaM., InaH. & KobayashiS. 1982 Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. JOSA 72 (1), 156.
ToyodaT. & YabeM. 1983 The temperature dependence of the refractive indices of fused silica and crystal quartz. J. Phys. D 16 (5), L97L100.
TranT., StaatH. J., ProsperettiA., SunC. & LohseD. 2012 Drop impact on superheated surfaces. Phys. Rev. Lett. 108 (3), 036101.
TranT., StaatH. J., Susarrey-ArceA., FoertschT. C., van HouseltA., GardeniersH. J., ProsperettiA., LohseD. & SunC. 2013 Droplet impact on superheated micro-structured surfaces. Soft Matt. 9 (12), 32723282.
VakarelskiI. U., PatankarN. A., MarstonJ. O., ChanD. Y. & ThoroddsenS. T. 2012 Stabilization of leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 489 (7415), 274277.
WachtersL. H. J., BonneH. & van NouhuisH. J. 1966 The heat transfer from a hot horizontal plate to sessile water drops in the spherodial state. Chem. Engng Sci. 21, 923936.
van der WaltS., SchönbergerJ. L., Nunez-IglesiasJ., BoulogneF., WarnerJ. D., YagerN., GouillartE., YuT. & 2014 scikit-image: image processing in Python. PeerJ 2, e453.
ZehnderL. 1891 Ein neuer Interferenzrefraktor. Zeitschrift für Instrumentenkunde 11, 275285.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 22
Total number of PDF views: 238 *
Loading metrics...

Abstract views

Total abstract views: 237 *
Loading metrics...

* Views captured on Cambridge Core between 29th August 2017 - 20th October 2017. This data will be updated every 24 hours.