Hostname: page-component-7f64f4797f-kg7gq Total loading time: 0.001 Render date: 2025-11-07T11:06:36.138Z Has data issue: false hasContentIssue false

Lift increment scaling and its failure due to the leading-edge vortex detachment transition for a flapping wing under perturbations

Published online by Cambridge University Press:  03 November 2025

Bruce Ruishu Jin*
Affiliation:
School of Engineering and Technology, University of New South Wales, Canberra, ACT 2600, Australia CSIRO Data61, Private Bag 10, Clayton South, VIC 3169, Australia
Xueyu Ji
Affiliation:
School of Engineering and Technology, University of New South Wales, Canberra, ACT 2600, Australia Queensland Micro and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
Sridhar Ravi
Affiliation:
School of Engineering and Technology, University of New South Wales, Canberra, ACT 2600, Australia
John Young
Affiliation:
School of Engineering and Technology, University of New South Wales, Canberra, ACT 2600, Australia
Gerald G. Pereira
Affiliation:
CSIRO Data61, Private Bag 10, Clayton South, VIC 3169, Australia
Fang-Bao Tian*
Affiliation:
School of Engineering and Technology, University of New South Wales, Canberra, ACT 2600, Australia
*
Corresponding authors: Bruce Ruishu Jin, ruishu.jin@data61.csiro.au; Fang-Bao Tian, fangbao.tian@unsw.edu.au
Corresponding authors: Bruce Ruishu Jin, ruishu.jin@data61.csiro.au; Fang-Bao Tian, fangbao.tian@unsw.edu.au

Abstract

A heaving and pitching wing encountering effective angle-of-attack perturbations at the Reynolds numbers of 2000 and 20 000 is numerically studied by using an immersed boundary–lattice Boltzmann method. The perturbations are introduced as an abrupt heaving or pitching motion superposed on the baseline motion. It is found that the lift increment scales with the increase in the perturbation effective angle of attack, especially during the heaving perturbation. The pitching perturbation is more likely to disrupt this scaling due to the transition of the leading-edge vortex (LEV) detachment mechanism, where the detachment mechanism of the LEV transitions from bluff-body shedding dominant to vorticity layer eruption dominant. Despite the same variation in the effective angle of attack for the heaving and pitching perturbations, vorticity layer eruption is more likely to occur under the fast pitching perturbation. When the Reynolds number is increased to 20 000, the time histories of aerodynamic force are similar to those at the Reynolds number of 2000. Moreover, the boundary layer under the LEV is more resistant to the adverse pressure gradient, leading to greater variability in vorticity layer eruption.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aidun, C.K. & Clausen, J.R. 2010 Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42 (1), 439472.10.1146/annurev-fluid-121108-145519CrossRefGoogle Scholar
Akkala, J.M. & Buchholz, J.H.J. 2017 Vorticity transport mechanisms governing the development of leading-edge vortices. J. Fluid Mech. 829, 512537.10.1017/jfm.2017.559CrossRefGoogle Scholar
Anderson, J.M., Streitlien, K., Barrett, D.S. & Triantafyllou, M.S. 1998 Oscillating foils of high propulsive efficiency. J. Fluid Mech. 360, 4172.10.1017/S0022112097008392CrossRefGoogle Scholar
Andreu-Angulo, I., Babinsky, H., Biler, H., Sedky, G. & Jones, A.R. 2020 Effect of transverse gust velocity profiles. AIAA J. 58 (12), 51235133.10.2514/1.J059665CrossRefGoogle Scholar
Badrya, C., Biler, H., Jones, A.R. & Baeder, J.D. 2021 Effect of gust width on flat-plate response in large transverse gust. AIAA J. 59 (1), 4964.10.2514/1.J059678CrossRefGoogle Scholar
Baik, Y.S. 2011 Unsteady force generation and vortex dynamics of pitching and plunging airfoils at low Reynolds number. PhD thesis, University of Michigan, Michigan, USA.Google Scholar
Baik, Y.S., Bernal, L.P., Granlund, K. & Ol, M.V. 2012 Unsteady force generation and vortex dynamics of pitching and plunging aerofoils. J. Fluid Mech. 709, 3768.10.1017/jfm.2012.318CrossRefGoogle Scholar
Bhat, S.S., Mazharmanesh, S., Medina, A., Tian, F.B., Young, J., Lai, J.C.S. & Ravi, S. 2023 Pitch perturbation effects on a revolving wing at low Reynolds number. Phys. Rev. Fluids 8, 104701.10.1103/PhysRevFluids.8.104701CrossRefGoogle Scholar
Biler, H., Sedky, G., Jones, A.R., Saritas, M. & Cetiner, O. 2021 Experimental investigation of transverse and vortex gust encounters at low Reynolds numbers. AIAA J. 59 (3), 786799.10.2514/1.J059658CrossRefGoogle Scholar
Bomphrey, R.J., Nakata, T., Phillips, N. & Walker, S.M. 2017 Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight. Nature 544 (7648), 9295.10.1038/nature21727CrossRefGoogle ScholarPubMed
Buchholz, J.H.J. & Smits, A.J. 2006 On the evolution of the wake structure produced by a low-aspect-ratio pitching panel. J. Fluid Mech. 546, 433443.10.1017/S0022112005006865CrossRefGoogle Scholar
Buchholz, J.H.J. & Smits, A.J. 2008 The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel. J. Fluid Mech. 603, 331365.10.1017/S0022112008000906CrossRefGoogle ScholarPubMed
Carr, L.W. 1988 Progress in analysis and prediction of dynamic stall. J. Aircraft 25 (1), 617.10.2514/3.45534CrossRefGoogle Scholar
Chen, L., Wu, J., Zhou, C., Hsu, S.-J. & Cheng, B. 2018 Unsteady aerodynamics of a pitching-flapping-perturbed revolving wing at low Reynolds number. Phys. Fluids 30 (5), 051903.10.1063/1.5024925CrossRefGoogle Scholar
Chen, L., Zhou, C. & Wu, J. 2020 The role of effective angle of attack in hovering pitching-flapping-perturbed revolving wings at low Reynolds number. Phys. Fluids 32 (1), 011906.10.1063/1.5130959CrossRefGoogle Scholar
Chen, S. & Doolen, G.D. 1998 Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30 (1), 329364.10.1146/annurev.fluid.30.1.329CrossRefGoogle Scholar
Chin, D.D. & Lentink, D. 2016 Flapping wing aerodynamics: from insects to vertebrates. J. Expl Biol. 219 (7), 920932.10.1242/jeb.042317CrossRefGoogle ScholarPubMed
Choudhry, A., Leknys, R., Arjomandi, M. & Kelso, R. 2014 An insight into the dynamic stall lift characteristics. Expl Therm. Fluid Sci. 58, 188208.10.1016/j.expthermflusci.2014.07.006CrossRefGoogle Scholar
Coreixas, C., Wissocq, G., Puigt, G., Boussuge, J.-F. & Sagaut, P. 2017 Recursive regularization step for high-order lattice Boltzmann methods. Phys. Rev. E 96, 033306.10.1103/PhysRevE.96.033306CrossRefGoogle ScholarPubMed
Corkery, S.J. 2019 Unsteady aerodynamics of wing-gust encounters. PhD thesis, University of Cambridge, Cambridge, UK.Google Scholar
Corkery, S.J., Babinsky, H. & Harvey, J.K. 2018 On the development and early observations from a towing tank-based transverse wing–gust encounter test rig. Exp. Fluids 59, 116.10.1007/s00348-018-2586-0CrossRefGoogle Scholar
Dickinson, M.H., Lehmann, F.-O. & Sane, S.P. 1999 Wing rotation and the aerodynamic basis of insect flight. Science 284 (5422), 19541960.10.1126/science.284.5422.1954CrossRefGoogle ScholarPubMed
Doligalski, T.L., Smith, C.R. & Walker, J.D.A. 1994 Vortex interactions with walls. Annu. Rev. Fluid Mech. 26 (1), 573616.10.1146/annurev.fl.26.010194.003041CrossRefGoogle Scholar
Dong, H., Mittal, R. & Najjar, F.M. 2006 Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils. J. Fluid Mech. 566, 309343.10.1017/S002211200600190XCrossRefGoogle Scholar
Eldredge, J.D. & Jones, A.R. 2019 Leading-edge vortices: mechanics and modeling. Annu. Rev. Fluid Mech. 51 (1), 75104.10.1146/annurev-fluid-010518-040334CrossRefGoogle Scholar
Ellington, C.P. 1999 The novel aerodynamics of insect flight: applications to micro-air vehicles. J. Expl Biol. 202 (23), 34393448.10.1242/jeb.202.23.3439CrossRefGoogle ScholarPubMed
Ellington, C.P., van den Berg, C., Willmott, A.P. & Thomas, A.L.R. 1996 Leading-edge vortices in insect flight. Nature 384 (6610), 626630.10.1038/384626a0CrossRefGoogle Scholar
Filippova, O. & Hänel, D. 2000 Acceleration of lattice-BGK schemes with grid refinement. J. Comput. Phys. 165 (2), 407427.10.1006/jcph.2000.6617CrossRefGoogle Scholar
Fisher, A., Ravi, S., Watkins, S., Watmuff, J., Wang, C., Liu, H. & Petersen, P. 2016 The gust-mitigating potential of flapping wings. Bioinspir. Biomim. 11 (4), 046010.10.1088/1748-3190/11/4/046010CrossRefGoogle ScholarPubMed
Ford, C.W.P. & Babinsky, H. 2013 Lift and the leading-edge vortex. J. Fluid Mech. 720, 280313.10.1017/jfm.2013.28CrossRefGoogle Scholar
Goldstein, D., Handler, R. & Sirovich, L. 1993 Modeling a no-slip flow boundary with an external force field. J. Comput. Phys. 105 (2), 354366.10.1006/jcph.1993.1081CrossRefGoogle Scholar
Graftieaux, L., Michard, M. & Grosjean, N. 2001 Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas. Sci. Technol. 12 (9), 1422.10.1088/0957-0233/12/9/307CrossRefGoogle Scholar
Granlund, K., Monnier, B., Ol, M. & Williams, D. 2014 Airfoil longitudinal gust response in separated vs. attached flows. Phys. Fluids 26 (2), 027103.10.1063/1.4864338CrossRefGoogle Scholar
Griffith, B.E. & Patankar, N.A. 2020 Immersed methods for fluid–structure interaction. Annu. Rev. Fluid Mech. 52 (1), 421448.10.1146/annurev-fluid-010719-060228CrossRefGoogle ScholarPubMed
Gu, M., Wu, J. & Zhang, Y. 2020 Wing rapid responses and aerodynamics of fruit flies during headwind gust perturbations. Bioinspir. Biomim. 15 (5), 056001.10.1088/1748-3190/ab97fcCrossRefGoogle ScholarPubMed
Guo, Z., Zheng, C. & Shi, B. 2002 a Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65, 046308.10.1103/PhysRevE.65.046308CrossRefGoogle ScholarPubMed
Guo, Z., Zheng, C. & Shi, B. 2002 b An extrapolation method for boundary conditions in lattice Boltzmann method. Phys. Fluids 14 (6), 20072010.10.1063/1.1471914CrossRefGoogle Scholar
Gupta, S., Sharma, A., Agrawal, A., Thompson, M.C. & Hourigan, K. 2023 Role of shape and kinematics in the hydrodynamics of a fish-like oscillating hydrofoil. J. Mar. Sci. Engng 11 (10), 1923.10.3390/jmse11101923CrossRefGoogle Scholar
Hedrick, T.L., Cheng, B. & Deng, X. 2009 Wingbeat time and the scaling of passive rotational damping in flapping flight. Science 324 (5924), 252255.10.1126/science.1168431CrossRefGoogle ScholarPubMed
Hover, F.S., Haugsdal, ø & Triantafyllou, M.S. 2004 Effect of angle of attack profiles in flapping foil propulsion. J. Fluids Struct. 19 (1), 3747.10.1016/j.jfluidstructs.2003.10.003CrossRefGoogle Scholar
Huang, Q., Liu, Z., Wang, L., Ravi, S., Young, J., Lai, J.C.S. & Tian, F.-B. 2022 Streamline penetration, velocity error, and consequences of the feedback immersed boundary method. Phys. Fluids 34 (9), 097101.10.1063/5.0101584CrossRefGoogle Scholar
Huang, W.-X. & Tian, F.-B. 2019 Recent trends and progress in the immersed boundary method. Proc. Inst. Mech. Engrs C J. Mech. Engng Sci. 233 (23–24), 76177636.10.1177/0954406219842606CrossRefGoogle Scholar
Jardin, T., Farcy, A. & David, L. 2012 Three-dimensional effects in hovering flapping flight. J. Fluid Mech. 702, 102125.10.1017/jfm.2012.163CrossRefGoogle Scholar
Jin, B.R., Wang, L., Ravi, S., Young, J., Lai, J.C.S. & Tian, F.-B. 2024 Enhancing tip vortices to improve the lift production through shear layers in flapping-wing flow control. J. Fluid Mech. 999, A25.10.1017/jfm.2024.942CrossRefGoogle Scholar
Jones, A.R. & Babinsky, H. 2011 Reynolds number effects on leading edge vortex development on a waving wing. Exp. Fluids 51 (1), 197210.10.1007/s00348-010-1037-3CrossRefGoogle Scholar
Jones, A.R., Cetiner, O. & Smith, M.J. 2022 Physics and modeling of large flow disturbances: discrete gust encounters for modern air vehicles. Annu. Rev. Fluid Mech. 54 (2022), 469493.10.1146/annurev-fluid-031621-085520CrossRefGoogle Scholar
Jones, M. & Yamaleev, N.K. 2016 Effect of lateral, downward, and frontal gusts on flapping wing performance. Comput. Fluids 140, 175190.10.1016/j.compfluid.2016.08.016CrossRefGoogle Scholar
Kissing, J., Kriegseis, J., Li, Z.-Y., Feng, L.-H., Hussong, J. & Tropea, C. 2020 Insights into leading edge vortex formation and detachment on a pitching and plunging flat plate. Exp. Fluids 61, 118.10.1007/s00348-020-03034-1CrossRefGoogle Scholar
Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G. & Viggen, E.M. 2017 The Lattice Boltzmann Method. Springer Cham.10.1007/978-3-319-44649-3CrossRefGoogle Scholar
Lai, J.C.S. & Platzer, M.F. 1999 Jet characteristics of a plunging airfoil. AIAA J. 37 (12), 15291537.10.2514/2.641CrossRefGoogle Scholar
Latt, J. & Chopard, B. 2006 Lattice Boltzmann method with regularized pre-collision distribution functions. Maths Comput. Simul. 72 (2), 165168.10.1016/j.matcom.2006.05.017CrossRefGoogle Scholar
Leishman, G.J. 2002 Principles of Helicopter Aerodynamics. Cambridge Aerospace Series.Google Scholar
Li, Z.-Y., Feng, L.-H., Kissing, J., Tropea, C. & Wang, J.-J. 2020 Experimental investigation on the leading-edge vortex formation and detachment mechanism of a pitching and plunging plate. J. Fluid Mech. 901, A17.10.1017/jfm.2020.509CrossRefGoogle Scholar
Lighthill, M.J. 1963 Introduction boundary layer theory. Laminar Boundary Layers . Available at: https://scholar.google.com/scholar?cluster=9950426421315814866&hl=en&as_sdt=0,5.Google Scholar
Liu, H., Wang, S. & Liu, T. 2024 Vortices and forces in biological flight: insects, birds, and bats. Annu. Rev. Fluid Mech. 56, 147170.10.1146/annurev-fluid-120821-032304CrossRefGoogle Scholar
Lévêque, E., Toschi, F., Shao, L. & Bertoglio, J.-P. 2007 Shear-improved Smagorinsky model for large-eddy simulation of wall-bounded turbulent flows. J. Fluid Mech. 570, 491502.10.1017/S0022112006003429CrossRefGoogle Scholar
Malaspinas, O. & Sagaut, P. 2012 Consistent subgrid scale modelling for lattice Boltzmann methods. J. Fluid Mech. 700, 514542.10.1017/jfm.2012.155CrossRefGoogle Scholar
McCroskey, W.J. 1982 Unsteady airfoils. Annu. Rev. Fluid Mech. 14, 285311.10.1146/annurev.fl.14.010182.001441CrossRefGoogle Scholar
Mittal, R. & Iaccarino, G. 2005 Immersed boundary methods. Annu. Rev. Fluid Mech. 37 (1), 239261.10.1146/annurev.fluid.37.061903.175743CrossRefGoogle Scholar
Moulin, B. & Karpel, M. 2007 Gust loads alleviation using special control surfaces. J. Aircraft 44 (1), 1725.10.2514/1.19876CrossRefGoogle Scholar
Muijres, F.T., Johansson, L.C., Barfield, R., Wolf, M., Spedding, G.R. & Hedenström, A. 2008 Leading-edge vortex improves lift in slow-flying bats. Science 319 (5867), 12501253.10.1126/science.1153019CrossRefGoogle ScholarPubMed
Mulleners, K. & Raffel, M. 2012 The onset of dynamic stall revisited. Exp. Fluids 52, 779793.10.1007/s00348-011-1118-yCrossRefGoogle Scholar
Nguyen, K., Au, L.T.K., Phan, H.-V., Park, S.H. & Park, H.C. 2021 Effects of wing kinematics, corrugation, and clap-and-fling on aerodynamic efficiency of a hovering insect-inspired flapping-wing micro air vehicle. Aerosp. Sci. Technol. 118, 106990.10.1016/j.ast.2021.106990CrossRefGoogle Scholar
Peskin, C.S. 2002 The immersed boundary method. Acta Numerica 11, 479517.10.1017/S0962492902000077CrossRefGoogle Scholar
Platzer, M.F., Jones, K.D., Young, J. & Lai, J.C.S. 2008 Flapping wing aerodynamics: progress and challenges. AIAA J. 46 (9), 21362149.10.2514/1.29263CrossRefGoogle Scholar
Ramesh, K., Gopalarathnam, A., Granlund, K., Ol, M.V. & Edwards, J.R. 2014 Discrete-vortex method with novel shedding criterion for unsteady aerofoil flows with intermittent leading-edge vortex shedding. J. Fluid Mech. 751, 500538.10.1017/jfm.2014.297CrossRefGoogle Scholar
Ravi, S., Crall, J.D., McNeilly, L., Gagliardi, S.F., Biewener, A.A. & Combes, S.A. 2015 Hummingbird flight stability and control in freestream turbulent winds. J. Expl Biol. 218 (9), 14441452.Google ScholarPubMed
Read, D.A., Hover, F.S. & Triantafyllou, M.S. 2003 Forces on oscillating foils for propulsion and maneuvering. J. Fluids Struct. 17 (1), 163183.10.1016/S0889-9746(02)00115-9CrossRefGoogle Scholar
Rival, D.E., Kriegseis, J., Schaub, P., Widmann, A. & Tropea, C. 2014 Characteristic length scales for vortex detachment on plunging profiles with varying leading-edge geometry. Exp. Fluids 55 (1), 18.10.1007/s00348-013-1660-xCrossRefGoogle Scholar
Sane, S.P. 2003 The aerodynamics of insect flight. J. Expl Biol. 206 (23), 41914208.10.1242/jeb.00663CrossRefGoogle ScholarPubMed
Sedky, G., Gementzopoulos, A., Andreu-Angulo, I., Lagor, F.D. & Jones, A.R. 2022 Physics of gust response mitigation in open-loop pitching manoeuvres. J. Fluid Mech. 944, A38.10.1017/jfm.2022.509CrossRefGoogle Scholar
Shyy, W., Aono, H., Chimakurthi, S.K., Trizila, P., Kang, C.-K., Cesnik, C.E.S. & Liu, H. 2010 Recent progress in flapping wing aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 46 (7), 284327.10.1016/j.paerosci.2010.01.001CrossRefGoogle Scholar
Shyy, W., Lian, Y., Tang, J., Viieru, D. & Liu, H. 2008 Aerodynamics of Low Reynolds Number Flyers. Cambridge University Press.Google Scholar
Shyy, W. & Liu, H. 2007 Flapping wings and aerodynamic lift: the role of leading-edge vortices. AIAA J. 45 (12), 28172819.10.2514/1.33205CrossRefGoogle Scholar
Smits, A.J. 2019 Undulatory and oscillatory swimming. J. Fluid Mech. 874, P1.10.1017/jfm.2019.284CrossRefGoogle Scholar
Sum Wu, K., Nowak, J. & Breuer, K.S. 2019 Scaling of the performance of insect-inspired passive-pitching flapping wings. J. R. Soc. Interface 16 (161), 20190609.10.1098/rsif.2019.0609CrossRefGoogle ScholarPubMed
Taylor, G.K., Nudds, R.L. & Thomas, A.L.R. 2003 Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature 425 (6959), 707711.10.1038/nature02000CrossRefGoogle Scholar
Theodorsen, T. 1949 General theory of aerodynamic instability and the mechanism of flutter. Tech. Rep. NASA.Google Scholar
Thielicke, W. & Stamhuis, E.J. 2015 The influence of wing morphology on the three-dimensional flow patterns of a flapping wing at bird scale. J. Fluid Mech. 768, 240260.10.1017/jfm.2015.71CrossRefGoogle Scholar
Triantafyllou, G.S., Triantafyllou, M.S. & Grosenbaugh, M.A. 1993 Optimal thrust development in oscillating foils with application to fish propulsion. J. Fluids Struct. 7 (2), 205224.10.1006/jfls.1993.1012CrossRefGoogle Scholar
Van Buren, T., Floryan, D. & Smits, A.J. 2019 Scaling and performance of simultaneously heaving and pitching foils. AIAA J. 57 (9), 36663677.10.2514/1.J056635CrossRefGoogle Scholar
Visbal, M.R. 2009 High-fidelity simulation of transitional flows past a plunging airfoil. AIAA J. 47 (11), 26852697.10.2514/1.43038CrossRefGoogle Scholar
Visbal, M.R. & Garmann, D.J. 2019 Comparison of pitch versus plunge maneuvers of a finite wing. AIAA Paper 2019-3334.10.2514/6.2019-3334CrossRefGoogle Scholar
Wang, L., Liu, Z., Jin, B.R., Huang, Q., Young, J. & Tian, F.-B. 2024 a Wall-modeled large eddy simulation in the immersed boundary-lattice Boltzmann method. Phys. Fluids 36 (3), 035167.10.1063/5.0198252CrossRefGoogle Scholar
Wang, T., Feng, L.-H., Cao, Y.-T. & Wang, J.-J. 2024 b Airfoil response to periodic vertical and longitudinal gusts. J. Fluid Mech. 979, A35.10.1017/jfm.2023.1000CrossRefGoogle Scholar
Wang, Z.J. 2005 Dissecting insect flight. Annu. Rev. Fluid Mech. 37 (1), 183210.10.1146/annurev.fluid.36.050802.121940CrossRefGoogle Scholar
Watkins, S., Milbank, J., Loxton, B.J. & Melbourne, W.H. 2006 Atmospheric winds and their implications for microair vehicles. AIAA J. 44 (11), 25912600.10.2514/1.22670CrossRefGoogle Scholar
Wei, N.J., Kissing, J., Wester, T.T.B., Wegt, S., Schiffmann, K., Jakirlic, S., Hölling, M., Peinke, J. & Tropea, C. 2019 Insights into the periodic gust response of airfoils. J. Fluid Mech. 876, 237263.10.1017/jfm.2019.537CrossRefGoogle Scholar
Widmann, A. & Tropea, C. 2015 Parameters influencing vortex growth and detachment on unsteady aerodynamic profiles. J. Fluid Mech. 773, 432459.10.1017/jfm.2015.259CrossRefGoogle Scholar
Wu, J.-Z. & Wu, J.-M. 1993 Interactions between a solid surface and a viscous compressible flow field. J. Fluid Mech. 254, 183211.10.1017/S0022112093002083CrossRefGoogle Scholar
Wu, J.-Z. & Wu, J.-M. 1998 Boundary vorticity dynamics since Lighthill’s 1963 article: review and development. Theor. Comput. Fluid Dyn. 10, 459474.10.1007/s001620050077CrossRefGoogle Scholar
Xu, H. & Sagaut, P. 2013 Analysis of the absorbing layers for the weakly-compressible lattice Boltzmann methods. J. Comput. Phys. 245, 1442.10.1016/j.jcp.2013.02.051CrossRefGoogle Scholar
Xu, L., Tian, F.-B., Young, J. & Lai, J.C.S. 2018 A novel geometry-adaptive cartesian grid based immersed boundary–lattice Boltzmann method for fluid–structure interactions at moderate and high Reynolds numbers. J. Comput. Phys. 375, 2256.10.1016/j.jcp.2018.08.024CrossRefGoogle Scholar
Yang, X., Zhang, X., Li, Z. & He, G.-W. 2009 A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations. J. Comput. Phys. 228 (20), 78217836.10.1016/j.jcp.2009.07.023CrossRefGoogle Scholar
Young, J., Lai, J.C.S. & Platzer, M.F. 2014 A review of progress and challenges in flapping foil power generation. Prog. Aerosp. Sci. 67, 228.10.1016/j.paerosci.2013.11.001CrossRefGoogle Scholar
Yu, D., Mei, R. & Shyy, W. 2002 A multi-block lattice Boltzmann method for viscous fluid flows. Intl J. Numer. Meth. Fluids 39 (2), 99120.10.1002/fld.280CrossRefGoogle Scholar
Zurman-Nasution, A.N., Ganapathisubramani, B. & Weymouth, G.D. 2020 Influence of three-dimensionality on propulsive flapping. J. Fluid Mech. 886, A25.10.1017/jfm.2019.1078CrossRefGoogle Scholar
Supplementary material: File

Jin et al. supplementary movie 1

Vorticity contour evolution of the baseline case at Re = 2000.
Download Jin et al. supplementary movie 1(File)
File 269.4 KB
Supplementary material: File

Jin et al. supplementary movie 2

Vorticity contour evolution of the baseline case at Re = 20000.
Download Jin et al. supplementary movie 2(File)
File 1 MB
Supplementary material: File

Jin et al. supplementary movie 3

Vorticity contour evolution encounters the heaving perturbation for λ = 4 and αeff,p = 7.90° at Re = 2000.
Download Jin et al. supplementary movie 3(File)
File 295.1 KB
Supplementary material: File

Jin et al. supplementary movie 4

Vorticity contour evolution encounters the heaving perturbation for λ = 4 and αeff,p = 7.90° at Re = 20000.
Download Jin et al. supplementary movie 4(File)
File 875.5 KB
Supplementary material: File

Jin et al. supplementary movie 5

Vorticity contour evolution encounters the pitching perturbation for λ = 4 and αeff,p = 7.90° at Re = 2000.
Download Jin et al. supplementary movie 5(File)
File 315.8 KB
Supplementary material: File

Jin et al. supplementary movie 6

Vorticity contour evolution encounters the pitching perturbation for λ = 4 and αeff,p = 7.90° at Re = 20000.
Download Jin et al. supplementary movie 6(File)
File 887.8 KB