Skip to main content Accessibility help
×
×
Home

Linear iterative method for closed-loop control of quasiperiodic flows

  • Colin Leclercq (a1), Fabrice Demourant (a2), Charles Poussot-Vassal (a2) and Denis Sipp (a1)
Abstract

This work proposes a feedback-loop strategy to suppress intrinsic oscillations of resonating flows in the fully nonlinear regime. The frequency response of the flow is obtained from the resolvent operator about the mean flow, extending the framework initially introduced by McKeon & Sharma (J. Fluid Mech., vol. 658, 2010, pp. 336–382) to study receptivity mechanisms in turbulent flows. Using this linear time-invariant model of the nonlinear flow, modern control methods such as structured ${\mathcal{H}}_{\infty }$ -synthesis can be used to design a controller. The approach is successful in damping self-sustained oscillations associated with specific eigenmodes of the mean-flow spectrum. Despite excellent performance, the linear controller is however unable to completely suppress flow oscillations, and the controlled flow is effectively attracted towards a new dynamical equilibrium. This new attractor is characterized by a different mean flow, which can in turn be used to design a second controller. The method can then be iterated on subsequent mean flows, until the coupled system eventually converges to the base flow. An intuitive parallel can be drawn with Newton’s iteration: at each step, a linearized model of the flow response to a perturbation of the input is sought, and a new linear controller is designed, aiming at further reducing the fluctuations. The method is illustrated on the well-known case of two-dimensional incompressible open-cavity flow at Reynolds number $Re=7500$ , where the fully developed flow is initially quasiperiodic (2-torus state). The base flow is reached after five iterations. The present work demonstrates that nonlinear control problems may be solved without resorting to nonlinear reduced-order models. It also shows that physically relevant linear models can be systematically derived for nonlinear flows, without resorting to black-box identification from input–output data; the key ingredient being frequency-domain models based on the linearized Navier–Stokes equations about the mean flow. Applicability to amplifier flows and turbulent dynamics has, however, yet to be investigated.

Copyright
Corresponding author
Email address for correspondence: colin.leclercq@onera.fr
References
Hide All
Aleksić, K., Luchtenburg, M., King, R., Noack, B. & Pfeifer, J. 2010 Robust nonlinear control versus linear model predictive control of a bluff body wake. In 5th Flow Control Conference, p. 4833. AIAA.
Aleksić-Roessner, K., King, R., Lehmann, O., Tadmor, G. & Morzyński, M. 2014 On the need of nonlinear control for efficient model-based wake stabilization. Theor. Comput. Fluid Dyn. 28, 2349.
Amestoy, P. R., Duff, I. S., Koster, J. & L’Excellent, J.-Y. 2001 A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Applics 23, 1541.
Amestoy, P. R., Guermouche, A., L’Excellent, J.-Y. & Pralet, S. 2006 Hybrid scheduling for the parallel solution of linear systems. Parallel Comput. 32, 136156.
Antoulas, A. C. 2005 Approximation of Large-Scale Dynamical Systems. SIAM.
Apkarian, P. & Noll, D. 2006 Nonsmooth H synthesis. IEEE Trans. Autom. Control 51 (1), 7186.
Arbabi, H. & Mezić, I. 2017 Study of dynamics in post-transient flows using Koopman mode decomposition. Phys. Rev. Fluids 2, 124402.
Bagheri, S., Brandt, L. & Henningson, D. S. 2009 Input–output analysis, model reduction and control of the flat-plate boundary layer. J. Fluid Mech. 620, 263298.
Barbagallo, A., Sipp, D. & Schmid, P. J. 2009 Closed-loop control of an open cavity flow using reduced-order models. J. Fluid Mech. 641, 150.
Barbagallo, A., Sipp, D. & Schmid, P. J. 2011 Input–output measures for model reduction and closed-loop control: application to global modes. J. Fluid Mech. 685, 2353.
Barkley, D. 2006 Linear analysis of the cylinder wake mean flow. Europhys. Lett. 75, 750756.
Beneddine, S., Sipp, D., Arnault, A., Dandois, J. & Lesshafft, L. 2016 Conditions for validity of mean flow stability analysis. J. Fluid Mech. 798, 485504.
Bergmann, M., Cordier, L. & Brancher, J.-P. 2005 Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model. Phys. Fluids 17, 097101.
Blondel, V. & Tsitsiklis, J. N. 1997 NP-hardness of some linear control design problems. SIAM J. Control Optim. 35 (6), 21182127.
Brunton, S. L. & Noack, B. R. 2015 Closed-loop turbulence control: progress and challenges. Appl. Mech. Rev. 67, 050801.
Butler, K. M. & Farrell, B. F. 1993 Optimal perturbations and streak spacing in wall-bounded turbulent shear flow. Phys. Fluids A 5, 774777.
Camarri, S., Fallenius, B. E. G. & Fransson, J. H. M. 2013 Stability analysis of experimental flow fields behind a porous cylinder for the investigation of the large-scale wake vortices. J. Fluid Mech. 715, 499536.
Carini, M., Airiau, C., Debien, A., Léon, O. & Pralits, J. O. 2017 Global stability and control of the confined turbulent flow past a thick flat plate. Phys. Fluids 29, 024102.
Cattafesta, L. N. III, Shukla, D., Garg, S. & Ross, J. 1999 Development of an adaptive weapons-bay suppression system. In 5th AIAA/CEAS Aeroacoustics Conference and Exhibit, p. 1901. AIAA.
Cattafesta, L. N. III, Song, Q., Williams, D. R., Rowley, C. W. & Alvi, F. S. 2008 Active control of flow-induced cavity oscillations. Prog. Aerosp. Sci. 44 (7–8), 479502.
Cherubini, S., Robinet, J.-Ch. & De Palma, P. 2010 The effects of non-normality and nonlinearity of the Navier–Stokes operator on the dynamics of a large laminar separation bubble. Phys. Fluids 22, 014102.
Chomaz, J.-M. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37, 357392.
Cossu, C., Pujals, G. & Depardon, S. 2009 Optimal transient growth and very large–scale structures in turbulent boundary layers. J. Fluid Mech. 619, 7994.
Dahan, J. A., Morgans, A. S. & Lardeau, S. 2012 Feedback control for form-drag reduction on a bluff body with a blunt trailing edge. J. Fluid Mech. 704, 360387.
Dalla Longa, L., Morgans, A. S. & Dahan, J. A. 2017 Reducing the pressure drag of a d-shaped bluff body using linear feedback control. Theor. Comput. Fluid Dyn. 111.
Dandois, J., Garnier, E. & Pamart, P.-Y. 2013 Narx modelling of unsteady separation control. Exp. Fluids 54, 1445.
Del Álamo, J. C. & Jimenez, J. 2006 Linear energy amplification in turbulent channels. J. Fluid Mech. 559, 205213.
Dergham, G., Sipp, D., Robinet, J.-C. & Barbagallo, A. 2011 Model reduction for fluids using frequential snapshots. Phys. Fluids 23, 064101.
Duriez, T., Parezanovic, V., Laurentie, J.-C., Fourment, C., Delville, J., Bonnet, J.-P., Cordier, L., Noack, B. R., Segond, M., Abel, M. W. et al. 2014 Closed-loop control of experimental shear flows using machine learning. In 7th AIAA Flow Control Conference, p. 2219.
Efe, M., Debiasi, M., Yan, P., Özbay, H. & Samimy, M. 2005 Control of subsonic cavity flows by neural networks-analytical models and experimental validation. In AIAA Paper, vol. 294, p. 2005.
Flinois, T. L. B. & Morgans, A. S. 2016 Feedback control of unstable flows: a direct modelling approach using the Eigensystem Realisation Algorithm. J. Fluid Mech. 793, 4178.
Foures, D. P. G., Dovetta, N., Sipp, D. & Schmid, P. J. 2014 A data-assimilation method for Reynolds-averaged Navier–Stokes-driven mean flow reconstruction. J. Fluid Mech. 759, 404431.
Garnaud, X., Lesshafft, L., Schmid, P. J. & Huerre, P. 2013 The preferred mode of incompressible jets: linear frequency response analysis. J. Fluid Mech. 716, 189202.
Gautier, N., Aider, J.-L., Duriez, T., Noack, B. R., Segond, M. & Abel, M. 2015 Closed-loop separation control using machine learning. J. Fluid Mech. 770, 442457.
Gómez, F. & Blackburn, H. M. 2017 Data-driven approach to design of passive flow control strategies. Phys. Rev. Fluids 2, 021901.
Gómez, F., Blackburn, H. M., Rudman, M., Sharma, A. S. & McKeon, B. J. 2016 A reduced-order model of three-dimensional unsteady flow in a cavity based on the resolvent operator. J. Fluid Mech. 798, R2.
Gudmundsson, K. & Colonius, T. 2011 Instability wave models for the near-field fluctuations of turbulent jets. J. Fluid Mech. 689, 97128.
Hammond, D. A. & Redekopp, L. G. 1997 Global dynamics of symmetric and asymmetric wakes. J. Fluid Mech. 331, 231.
Heins, P. H., Jones, B. Ll. & Sharma, A. S. 2016 Passivity-based output-feedback control of turbulent channel flow. Automatica 69, 348355.
Henning, L. & King, R. 2007 Robust multivariable closed-loop control of a turbulent backward-facing step flow. J. Aircraft 44, 201208.
Henning, L., Pastoor, M., King, R., Noack, B. R. & Tadmor, G. 2007 Feedback control applied to the bluff body wake. In Active Flow Control (ed. King, R.), pp. 369390. Springer.
Hervé, A., Sipp, D., Schmid, P. J. & Samuelides, M. 2012 A physics-based approach to flow control using system identification. J. Fluid Mech. 702, 2658.
Högberg, M., Bewley, T. R. & Henningson, D. S. 2003 Relaminarization of Re 𝜏 = 100 turbulence using gain scheduling and linear state-feedback control. Phys. Fluids 15, 35723575.
Illingworth, S. J., Morgans, A. S. & Rowley, C. W. 2011 Feedback control of flow resonances using balanced reduced-order models. J. Sound Vib. 330, 15671581.
Illingworth, S. J., Morgans, A. S. & Rowley, C. W. 2012 Feedback control of cavity flow oscillations using simple linear models. J. Fluid Mech. 709, 223248.
Jacobi, I. & McKeon, B. J. 2011 Dynamic roughness perturbation of a turbulent boundary layer. J. Fluid Mech. 688, 258296.
Jeun, J., Nichols, J. W. & Jovanović, M. R. 2016 Input–output analysis of high-speed axisymmetric isothermal jet noise. Phys. Fluids 28, 047101.
Jones, B. Ll., Heins, P. H., Kerrigan, E. C., Morrison, J. F. & Sharma, A. S. 2015 Modelling for robust feedback control of fluid flows. J. Fluid Mech. 769, 687722.
Juniper, M. P. 2012 Absolute and convective instability in gas turbine fuel injectors. In ASME Turbo Expo 2010: Turbine Technical Conference and Exposition, pp. 189198.
Juniper, M. P. & Sujith, R. I. 2018 Sensitivity and nonlinearity in thermoacoustics. Annu. Rev. Fluid Mech. 50, 661689.
Kaiser, E., Noack, B. R., Cordier, L., Spohn, A., Segond, M., Abel, M., Daviller, G., Östh, J., Krajnović, S. & Niven, R. K. 2014 Cluster-based reduced-order modelling of a mixing layer. J. Fluid Mech. 754, 365414.
Kegerise, M., Cattafesta, L. N. III & Ha, C.-S. 2002 Adaptive identification and control of flow-induced cavity oscillations. In 1st Flow Control Conference, p. 3158.
Khalil, H. K. 2002 Nonlinear Systems, 3rd edn. Prentice-Hall.
Kim, J. & Bewley, T. R. 2007 A linear systems approach to flow control. Annu. Rev. Fluid Mech. 39, 383417.
King, R., Seibold, M., Lehmann, O., Noack, B. R., Morzyński, M. & Tadmor, G. 2005 Nonlinear Flow Control Based on a Low Dimensional Model of Fluid Flow, pp. 369386. Springer.
Lee, C., Kim, J., Babcock, D. & Goodman, R. 1997 Application of neural networks to turbulence control for drag reduction. Phys. Fluids 9, 17401747.
Lehoucq, R. B., Sorensen, D. C. & Yang, C.1997 ARPACK users’ guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods.
Leontini, J. S., Thompson, M. C. & Hourigan, K. 2010 A numerical study of global frequency selection in the time-mean wake of a circular cylinder. J. Fluid Mech. 645, 435446.
Li, J. & Morgans, A. S. 2016 Feedback control of combustion instabilities from within limit cycle oscillations using H -infinity loop-shaping and the 𝜈-gap metric. Proc. R. Soc. Lond. A 472, 20150821.
Liu, K., Jacques, R. N. & Miller, D. W. 1996 Frequency domain structural system identification by observability range space extraction. J. Dyn. Syst. Meas. Cont. 118, 211220.
Liu, Q., Sun, Y., Cattafesta, L. N., Ukeiley, L. S. & Taira, K.2018 Resolvent analysis of compressible flow over a long rectangular cavity. AIAA Paper 2018-0588.
Loiseau, J.-Ch. & Brunton, S. L. 2018 Constrained sparse galerkin regression. J. Fluid Mech. 838, 4267.
Luchtenburg, D. M., Aleksić, K., Schlegel, M., Noack, B. R., King, R., Tadmor, G., Günther, B. & Thiele, F. 2010 Turbulence control based on reduced-order models and nonlinear control design. In Active Flow Control II, pp. 341356. Springer.
Luhar, M., Sharma, A. S. & McKeon, B. J. 2014 Opposition control within the resolvent analysis framework. J. Fluid Mech. 749, 597626.
Luhar, M., Sharma, A. S. & McKeon, B. J. 2015 A framework for studying the effect of compliant surfaces on wall turbulence. J. Fluid Mech. 768, 415441.
Mantič-Lugo, V. & Gallaire, F. 2016 Self-consistent model for the saturation mechanism of the response to harmonic forcing in the backward-facing step flow. J. Fluid Mech. 793, 777797.
McKelvey, T., Akcay, H. & Ljung, L. 1996 Subspace-based multivariable system identification from frequency response data. IEEE Trans. Autom. Control 41, 960979.
McKeon, B. J. & Sharma, A. S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.
McKeon, B. J., Sharma, A. S. & Jacobi, I. 2013 Experimental manipulation of wall turbulence: a systems approach. Phys. Fluids 25, 031301.
Meliga, P. 2017 Harmonics generation and the mechanics of saturation in flow over an open cavity: a second-order self-consistent description. J. Fluid Mech. 826, 503521.
Meliga, P., Pujals, G. & Serre, E. 2012 Sensitivity of 2-d turbulent flow past a d-shaped cylinder using global stability. Phys. Fluids 24, 061701.
Mettot, C., Renac, F. & Sipp, D. 2014a Computation of eigenvalue sensitivity to base flow modifications in a discrete framework: application to open-loop control. J. Comput. Phys. 269, 234258.
Mettot, C., Sipp, D. & Bézard, H. 2014b Quasi-laminar stability and sensitivity analyses for turbulent flows: prediction of low-frequency unsteadiness and passive control. Phys. Fluids 26, 061701.
Mezić, I. 2013 Analysis of fluid flows via spectral properties of the Koopman operator. Annu. Rev. Fluid Mech. 45, 357378.
Mittal, S. 2007 Global linear stability analysis of time-averaged flows. Intl J. Numer. Meth. Fluids 58, 111.
Moarref, R, Jovanović, M. R., Tropp, J. A., Sharma, A. S. & McKeon, B. J. 2014 A low-order decomposition of turbulent channel flow via resolvent analysis and convex optimization. Phys. Fluids 26, 051701.
Nagarajan, K. K., Cordier, L. & Airiau, C. 2013 Development and application of a reduced order model for the control of self-sustained instabilities in cavity flows. Commun. Comput. Phys. 14, 186218.
Nakashima, S., Fukagata, K. & Luhar, M. 2017 Assessment of suboptimal control for turbulent skin friction reduction via resolvent analysis. J. Fluid Mech. 828, 496526.
Noack, B. R., Schlegel, M., Morzyński, M. & Tadmor, G. 2011 Galerkin method for nonlinear dynamics. In Reduced-Order Modelling for Flow Control, pp. 111149. Springer.
Pier, B. 2002 On the frequency selection of finite-amplitude vortex shedding in the cylinder wake. J. Fluid Mech. 458, 407417.
Pillarisetti, A. & Cattafesta, L. III 2001 Adaptive identification of fluid-dynamic systems. In 15th AIAA Computational Fluid Dynamics Conference, p. 2978.
Poussot-Vassal, C. & Sipp, D. 2015 Parametric reduced order dynamical model construction of a fluid flow control problem. IFAC-PapersOnLine 48, 133138.
Pujals, G., García-Villalba, M., Cossu, C. & Depardon, S. 2009 A note on optimal transient growth in turbulent channel flows. Phys. Fluids 21, 015109.
Rowley, C. W. & Dawson, S. T. M. 2017 Model reduction for flow analysis and control. Annu. Rev. Fluid Mech. 49, 387417.
Rowley, C. W. & Williams, D. R. 2006 Dynamics and control of high-Reynolds-number flow over open cavities. Annu. Rev. Fluid Mech. 38, 251276.
Rowley, C. W., Williams, D. R., Colonius, T., Murray, R. M. & Macmynowski, D. G. 2006 Linear models for control of cavity flow oscillations. J. Fluid Mech. 547, 317330.
Samimy, M., Debiasi, M., Caraballo, E., Serrani, A., Yuan, X., Little, J. & Myatt, J. H. 2007 Feedback control of subsonic cavity flows using reduced-order models. J. Fluid Mech. 579, 315346.
Sartor, F., Mettot, C., Bur, R. & Sipp, D. 2015a Unsteadiness in transonic shock-wave/boundary-layer interactions: experimental investigation and global stability analysis. J. Fluid Mech. 781, 550557.
Sartor, F., Mettot, C. & Sipp, D. 2015b Stability, receptivity, and sensitivity analyses of buffeting transonic flow over a profile. AIAA J. 53, 19801993.
Schmid, P. J. & Sipp, D. 2016 Linear control of oscillator and amplifier flows. Phys. Rev. Fluids 1, 040501.
Schmidt, O. T., Towne, A., Colonius, T., Cavalieri, A. V. G., Jordan, P. & Brs, G. A. 2017 Wavepackets and trapped acoustic modes in a turbulent jet: coherent structure eduction and global stability. J. Fluid Mech. 825, 11531181.
Semeraro, O., Bagheri, S., Brandt, L. & Henningson, D. S. 2011 Feedback control of three-dimensional optimal disturbances using reduced-order models. J. Fluid Mech. 677, 63102.
Semeraro, O., Lesshafft, L., Jaunet, V. & Jordan, P. 2016 Modeling of coherent structures in a turbulent jet as global linear instability wavepackets: theory and experiment. Intl J. Heat Fluid Flow 62, 2432.
Semeraro, O., Lusseyran, F., Pastur, L. & Jordan, P. 2017 Qualitative dynamics of wave packets in turbulent jets. Phys. Rev. Fluids 2, 094605.
Sharma, A. S. 2009 Model reduction of turbulent fluid flows using the supply rate. Intl J. Bifurcation Chaos 19, 12671278.
Sharma, A. S. & McKeon, B. J. 2013 On coherent structure in wall turbulence. J. Fluid Mech. 728, 196238.
Sharma, A. S., Morrison, J. F., McKeon, B. J., Limebeer, D. J. N., Koberg, W. H. & Sherwin, S. J. 2011 Relaminarisation of Re 𝜏 = 100 channel flow with globally stabilising linear feedback control. Phys. Fluids 23, 125105.
Sipp, D. & Lebedev, A. 2007 Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. J. Fluid Mech. 593, 333358.
Sipp, D. & Schmid, P. J. 2016 Linear closed-loop control of fluid instabilities and noise-induced perturbations: a review of approaches and tools. Appl. Mech. Rev. 68, 020801.
Symon, S., Dovetta, N., McKeon, B. J., Sipp, D. & Schmid, P. J. 2017 Data assimilation of mean velocity from 2d PIV measurements of flow over an idealized airfoil. Exp. Fluids 58, 61.
Tissot, G., Zhang, M., Lajús, F. C. Jr., Cavalieri, A. V. G. & Jordan, P. 2017 Sensitivity of wavepackets in jets to nonlinear effects: the role of the critical layer. J. Fluid Mech. 811, 95137.
Towne, A., Schmidt, O. T. & Colonius, T. 2018 Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821867.
Turton, S. E., Tuckerman, L. S. & Barkley, D. 2015 Prediction of frequencies in thermosolutal convection from mean flows. Phys. Rev. E 91, 043009.
Williams, D., Kerstens, W., Pfeiffer, J., King, R. & Colonius, T. 2010 Unsteady lift suppression with a robust closed loop controller. In Active Flow Control II, pp. 1930. Springer.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed