Skip to main content Accessibility help

Linear stability analysis of capillary instabilities for concentric cylindrical shells

  • X. Liang (a1), D. S. Deng (a2), J.-C. Nave (a3) and Steven G. Johnson (a1)


Motivated by complex multi-fluid geometries currently being explored in fibre-device manufacturing, we study capillary instabilities in concentric cylindrical flows of fluids with arbitrary viscosities, thicknesses, densities, and surface tensions in both the Stokes regime and for the full Navier–Stokes problem. Generalizing previous work by Tomotika (), Stone & Brenner (, equal viscosities) and others, we present a full linear stability analysis of the growth modes and rates, reducing the system to a linear generalized eigenproblem in the Stokes case. Furthermore, we demonstrate by Plateau-style geometrical arguments that only axisymmetric instabilities need be considered. We show that the case is already sufficient to obtain several interesting phenomena: limiting cases of thin shells or low shell viscosity that reduce to problems, and a system with competing breakup processes at very different length scales. The latter is demonstrated with full three-dimensional Stokes-flow simulations. Many cases remain to be explored, and as a first step we discuss two illustrative cases, an alternating-layer structure and a geometry with a continuously varying viscosity.


Corresponding author

Email address for correspondence:


Hide All
1. Abouraddy, A., Bayindir, M., Benoit, G., Hart, S., Kuriki, K., Orf, N., Shapira, O., Sorin, F., Temelkuran, B. & Fink, Y. 2007 Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat. Mater. 6 (5), 336347.
2. Abramowitz, M. & Stegun, I. A. 1992 Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables. Dover.
3. Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Croz, J. D., Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S. & Sorensen, D. 1999 LAPACK Users’ Guide, 3rd edn. SIAM.
4. Andrew, A. L., Chu, K. E. & Lancaster, P. 1995 On the numerical solution of nonlinear eigenvalue problems. Computing 55 (2), 91111.
5. Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C. & Van der Vorst, H. 1994 Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd edn. SIAM.
6. Batchelor, G. K. 1973 An Introduction to Fluid Dynamics. Cambridge University Press.
7. Buchak, P. 2010, Private communication.
8. Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.
9. Chang, Y. C., Hou, T. Y., Merriman, B. & Osher, S. 1996 A level set formulation of Eulerian interface capturing methods for incompressible fluid flows. J. Comput. Phys. 124 (2), 449464.
10. Chauhan, A., Maldarelli, C., Papageorgiou, D. T. & Rumschitzki, D. S. 2000 Temporal instability of compound threads and jets. J. Fluid Mech. 420 (1), 125.
11. Cohen, I., Brenner, M. P., Eggers, J. & Nagel, S. R. 1999 Two fluid drop snap-off problem: experiments and theory. Phys. Rev. Lett. 83 (6), 11471150.
12. Crowdy, D. 2002 On a class of geometry-driven free boundary problems. SIAM J. Appl. Math. 62, 945964.
13. Crowdy, D. G. 2003 Compressible bubbles in Stokes flow. J. Fluid Mech. 476, 345356.
14. Demmel, J. W. & Kagstrom, B. 1987 Computing stable eigendecompositions of matrix pencils. Linear Algebr. Applics. 88–89, 139186.
15. Deng, D. S., Orf, N. D., Abouraddy, A. F., Stolyarov, A. M., Joannopoulos, J. D., Stone, H. A. & Fink, Y. 2008 In-fiber semiconductor filament arrays. Nano Lett. 8 (12), 42654269.
16. Deng, D. S., Nave, J.-C., Liang, X., Johnson, S. G. & Fink, Y. 2011 Exploration of in-fiber nanostructures from capillary instability. Opt. Express (in press).
17. Deng, D. S., Orf, N. D., Danto, S., Abouraddy, A. F., Joannopoulo, J. D. & Fink, Y. 2010 Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments. Appl. Phys. Lett. 96, 023102.
18. Drazin, P. G. & Reid, W. H. 2004 Hydrodynamic Stability, 2nd edn. Cambridge University Press.
19. Eggers, J. 1993 Universal pinching of 3D axisymmetric free-surface flow. Phys. Rev. Lett. 71 (21), 34583460.
20. Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71, 036601.
21. Egusa, S., Wang, Z., Chocat, N., Ruff, Z. M., Stolyarov, A. M., Shemuly, D., Sorin, F., Rakich, P. T., Joannopoulos, J. D. & Fink, Y. 2010 Multimaterial piezoelectric fibres. Nat. Mater. 9, 643648.
22. Guillaume, P. 1999 Nonlinear eigenproblems. SIAM J. Matrix Anal. Appl. 20, 575595.
23. Gunawan, A. Y., Molenaar, J. & van de Ven, A. A. F. 2002 In-phase and out-of-phase break-up of two immersed liquid threads under influence of surface tension. Eur. J. Mech. B Fluids 21 (4), 399412.
24. Gunawan, A. Y., Molenaar, J. & van de Ven, A. A. F. 2004 Break-up of a set of liquid threads under influence of surface tension. J. Engng Math. 50 (1), 2549.
25. Hart, S. D., Maskaly, G. R., Temelkuran, B., Prideaux, P. H., Joannopoulos, J. D. & Fink, Y. 2002 External reflection from omnidirectional dielectric mirror fibers. Science 296, 511513.
26. Hopper, R. W. 1991 Plane Stokes flow driven by capillarity on a free surface. Part II. Further developments. J. Fluid Mech. 230, 355364.
27. Kinoshita, C., Teng, H. & Masutani, S. 1994 A study of the instability of liquid jets and comparison with Tomotika’s analysis. Intl J. Multiphase Flow 20 (3), 523533.
28. Kuiken, H. K. 1990 Viscous sintering: the surface-tension-driven flow of a liquid form under the influence of curvature gradients at its surface. J. Fluid Mech. 214, 503515.
29. Kundu, P. K. & Cohen, I. M. 2007 Fluid Mechanics. Academic.
30. Kuriki, K., Shapira, O., Hart, S. D., Benoit, B., Kuriki, Y., Viens, J. F., Bayindir, M., Joannopoulos, J. D. & Fink, Y. 2004 Hollow multilayer photonic bandgap fibers for NIR applications. Opt. Express 12, 15101517.
31. Liao, B. S., Bai, Z. J., Lee, L. Q. & Ko, K. 2010 Nonlinear Rayleigh–Ritz iterative method for solving large scale nonlinear eigenvalue problems. Taiwanese J. Math. 14 (3A), 869883.
32. Lin, S. P. 2003 Breakup of Liquid Sheets and Jets. Cambridge University Press.
33. Lister, J. R. & Stone, H. A. 1998 Capillary breakup of a viscous thread surrounded by another viscous fluid. Phys. Fluids 10 (11), 27582764.
34. Liu, X.-D., Osher, S. & Chan, T. 1994 Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115 (1), 200212.
35. Meister, B. J. & Scheele, G. F. 1967 Generalized solution of the Tomotika stability analysis for a cylindrical jet. AIChE J. 682688.
36. Ockendon, H. & Ockendon, J. R. 1995 Viscous Flow. Cambridge University Press.
37. Osher, S. & Fedkiw, R. 2002 Level Set Methods and Dynamic Implicit Surfaces. Springer.
38. Plateau, J. A. F. 1873 Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires, vol. 2. Gauthier-Villars.
39. Pone, E., Dubois, C., Gu, N., Gao, Y., Dupuis, A., Boismenu, F., Lacroix, S. & Skorobogatiy, M. 2006 Drawing of the hollow all-polymer Bragg fibers. Opt. Express 14 (13), 58385852.
40. Rayleigh, Lord 1879 On the capillary phenomena of jets. Proc. R. Soc. Lond. 29, 7197.
41. Rayleigh, Lord 1892 On the instability of a cylinder of viscous liquid under capillary force. Phil. Mag. 34 (207), 145154.
42. Ruhe, A. 2006 Rational Krylov for large nonlinear eigenproblems. In Applied Parallel Computing, pp. 357363. Springer.
43. Shah, R. K., Shum, H. C., Rowat, A. C., Lee, D., Agresti, J. J., Utada, A. S., Chu, L.-Y., Kim, J.-W., Fernandez-Nieves, A., Martinez, C. J. & Weitz, D. A. 2008 Designer emulsions using microfluidics. Mater. Today 11 (4), 1827.
44. Shu, C. W. & Osher, S. 1989 Efficient implementation of essentially non-oscillatory shock-capturing schemes. Part II. J. Comput. Phys. 83, 3278.
45. Sorin, F., Abouraddy, A., Orf, N., Shapira, O., Viens, J., Arnold, J., Joannopoulos, J. & Fink, Y. 2007 Multimaterial photodetecting fibers: a geometric and structural study. Adv. Mater. 19, 38723877.
46. Sterling, A. M. & Sleicher, C. A. 1975 The instability of capillary jets. J. Fluid Mech. 68, 477495.
47. Stone, H. A. & Brenner, M. P. 1996 Note on the capillary thread instability for fluids of equal viscosities. J. Fluid Mech. 318, 373374.
48. Sussman, M., Smereka, P. & Osher, S. 1994 A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114, 146159.
49. Tanveer, S. & Vasconcelos, G. L. 1995 Time-evolving bubbles in two-dimensional Stokes flow. J. Fluid Mech. 301, 325344.
50. Tomotika, S. 1935 On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proc. R. Soc. Lond. (A) Math. Phys. Sci. 150 (870), 322337.
51. Trefethen, L. N. & Bau, D. 1997 Numerical Linear Algebra. SIAM.
52. Utada, A. S., Lorenceau, E., Link, D. R., Kaplan, P. D., Stone, H. A. & Weitz, D. A. 2005 Monodisperse double emulsions generated from a microcapillary device. Science 308 (5721), 537541.
53. Voss, H. 2007 A Jacobi–Davidson method for nonlinear and nonsymmetric eigenproblems. Comput. Struct. 85 (17–18), 12841292.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Linear stability analysis of capillary instabilities for concentric cylindrical shells

  • X. Liang (a1), D. S. Deng (a2), J.-C. Nave (a3) and Steven G. Johnson (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.