Skip to main content Accessibility help

Linear stability and energetics of rotating radial horizontal convection

  • Gregory J. Sheard (a1), Wisam K. Hussam (a1) and Tzekih Tsai (a1)


The effect of rotation on horizontal convection in a cylindrical enclosure is investigated numerically. The thermal forcing is applied radially on the bottom boundary from the coincident axes of rotation and geometric symmetry of the enclosure. First, a spectral element method is used to obtain axisymmetric basic flow solutions to the time-dependent incompressible Navier–Stokes equations coupled via a Boussinesq approximation to a thermal transport equation for temperature. Solutions are obtained primarily at Rayleigh number $\mathit{Ra}=10^{9}$ and rotation parameters up to $Q=60$ (where $Q$ is a non-dimensional ratio between thermal boundary layer thickness and Ekman layer depth) at a fixed Prandtl number $\mathit{Pr}=6.14$ representative of water and enclosure height-to-radius ratio $H/R=0.4$ . The axisymmetric solutions are consistently steady state at these parameters, and transition from a regime unaffected by rotation to an intermediate regime occurs at $Q\approx 1$ in which variation in thermal boundary layer thickness and Nusselt number are shown to be governed by a scaling proposed by Stern (1975, Ocean Circulation Physics. Academic). In this regime an increase in $Q$ sees the flow accumulate available potential energy and more strongly satisfy an inviscid change in potential energy criterion for baroclinic instability. At the strongest $Q$ the flow is dominated by rotation, accumulation of available potential energy ceases and horizontal convection is suppressed. A linear stability analysis reveals several instability mode branches, with dominant wavenumbers typically scaling with $Q$ . Analysis of contributing terms of an azimuthally averaged perturbation kinetic energy equation applied to instability eigenmodes reveals that energy production by shear in the axisymmetric mean flow is negligible relative to that produced by conversion of available potential energy from the mean flow. An evolution equation for the quantity that facilitates this exchange, the vertical advective buoyancy flux, reveals that a baroclinic instability mechanism dominates over $5\lesssim Q\lesssim 30$ , whereas stronger and weaker rotations are destabilised by vertical thermal gradients in the mean flow.


Corresponding author

Email address for correspondence:


Hide All
Andrews, D. G. & McIntyre, M. E. 1976 Planetary waves in horizontal and vertical shear: the generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci. 33 (11), 20312048.
Andrews, D. G. & McIntyre, M. E. 1978 Generalized Eliassen–Palm and Charney–Drazin theorems for waves in axisymmetric mean flows in compressible atmospheres. J. Atmos. Sci. 35 (2), 175185.
Barkan, R., Winters, K. B. & Smith, S. G. L. 2013 Rotating horizontal convection. J. Fluid Mech. 723, 556586.
Barkley, D. & Henderson, R. D. 1996 Three-dimensional floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322, 215242.
Bodenschatz, E., Pesch, W. & Ahlers, G. 2000 Recent developments in Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 32 (1), 709778.
Cessi, P. & Fantini, M. 2004 The eddy-driven thermocline. J. Phys. Oceanogr. 34, 26422658.
Charney, J. G. 1947 The dynamics of long waves in a baroclinic westerly current. J. Meteorol. 4 (5), 136162.
Cogan, S. J., Ryan, K. & Sheard, G. J. 2011 Symmetry breaking and instability mechanisms in medium depth torsionally driven open cylinder flows. J. Fluid Mech. 672, 521544.
Curbelo, J., Lopez, J. M., Mancho, A. M. & Marques, F. 2014 Confined rotating convection with large Prandtl number: centrifugal effects on wall modes. Phys. Rev. E 89 (1), 013019.
Eady, E. T. 1949 Long waves and cyclone waves. Tellus 1 (3), 3352.
Früh, W. & Read, P. L. 1999 Experiments on a barotropic rotating shear layer. Part 1. Instability and steady vortices. J. Fluid Mech. 383, 143173.
Gayen, B., Griffiths, R. W. & Hughes, G. O. 2014 Stability transitions and turbulence in horizontal convection. J. Fluid Mech. 751, 698724.
Gill, A. E. 1982 Atmosphere-Ocean Dynamics, vol. 30. Academic.
Hadlock, R. K., Na, J. Y. & Stone, P. H. 1972 Direct thermal verification of symmetric baroclinic instability. J. Atmos. Sci. 29 (7), 13911393.
Hide, R. & Titman, C. W. 1967 Detached shear layers in a rotating fluid. J. Fluid Mech. 29 (01), 3960.
Hignett, P., Ibbetson, A. & Killworth, P. D. 1981 On rotating thermal convection driven by non-uniform heating from below. J. Fluid Mech. 109 (1), 161187.
Hughes, G. O. & Griffiths, R. W. 2008 Horizontal convection. Annu. Rev. Fluid Mech. 40, 185208.
Hussam, W. K., Tsai, T. K. & Sheard, G. J. 2014 The effect of rotation on radial horizontal convection and Nusselt number scaling in a cylindrical container. Intl J. Heat Mass Transfer 77, 4659.
Karniadakis, G. E., Israeli, M. & Orszag, S. A. 1991 High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97 (2), 414443.
King, E. M. & Aurnou, J. M. 2012 Thermal evidence for Taylor columns in turbulent rotating Rayleigh–Bénard convection. Phys. Rev. E 85 (1), 016313.
Kuo, H. 1949 Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere. J. Atmos. Sci. 6 (2), 105122.
Lappa, M. 2012 Rotating Thermal Flows in Natural and Industrial Processes. John Wiley & Sons.
Lopez, J. M. & Marques, F. 2009 Centrifugal effects in rotating convection: nonlinear dynamics. J. Fluid Mech. 628, 269297.
Lopez, J. M., Marques, F. & Avila, M. 2013 The Boussinesq approximation in rapidly rotating flows. J. Fluid Mech. 737, 5677.
Marshall, J., Jones, H., Karsten, R. & Wardle, R. 2002 Can eddies set ocean stratification. J. Phys. Oceanogr. 32 (1), 2638.
Marshall, J. & Schott, F. 1999 Open-ocean convection: observations, theory, and models. Rev. Geophys. 691, 164.
Ménesguen, C., McWilliams, J. C. & Molemaker, M. J. 2012 Ageostrophic instability in a rotating stratified interior jet. J. Fluid Mech. 711, 599619.
Mullarney, J. C., Griffiths, R. W. & Hughes, G. O. 2004 Convection driven by differential heating at a horizontal boundary. J. Fluid Mech. 516, 181209.
Niino, H. & Misawa, N. 1984 An experimental and theoretical study of barotropic instability. J. Atmos. Sci. 41 (12), 19922011.
Park, Y. & Whitehead, J. A. 1999 Rotating convection driven by differential bottom heating. J. Phys. Oceanogr. 29 (6), 12081220.
Plumb, R. A. & Ferrari, R. 2005 Transformed Eulerian-mean theory. Part I: Nonquasigeostrophic theory for eddies on a zonal-mean flow. J. Phys. Oceanogr. 35 (2), 165174.
Rayleigh, L. 1879 On the stability, or instability, of certain fluid motions. Proc. Lond. Math. Soc. s1–11 (1), 5772.
Reid, W. H. & Harris, D. L. 1958 Some further results on the B’enard problem. Phys. Fluids 1, 102110.
Rossby, H. T. 1965 On thermal convection driven by non-uniform heating from below: an experimental study. Deep-Sea Res. 12 (1), 916.
Sheard, G. J. 2009 Flow dynamics and wall shear-stress variation in a fusifom aneurysm. J. Engng Maths. 592, 233262.
Sheard, G. J. & King, M. P. 2011 Horizontal convection: effect of aspect ratio on Rayleigh number scaling and stability. Appl. Math. Model. 35 (4), 16471655.
Sheard, G. J. & Ryan, K. 2007 Pressure-driven flow past spheres moving in a circular tube. J. Fluid Mech. 592, 233262.
Smith, R. 1976 Longitudinal dispersion of a buoyant contaminant in a shallow channel. J. Fluid Mech. 78 (4), 677688.
Stern, M. E. 1975 Ocean Circulation Physics. Academic.
Stewartson, K. 1957 On almost rigid rotations. J. Fluid Mech. 3 (01), 1726.
Stone, P. H. 1966 On non-geostrophic baroclinic stability. J. Atmos. Sci. 23 (4), 390400.
Stone, P. H. 1970 On non-geostrophic baroclinic stability. Part II. J. Atmos. Sci. 27 (5), 721726.
Stone, P. H. 1971 Baroclinic stability under non-hydrostatic conditions. J. Fluid Mech. 45 (4), 659671.
Stone, P. H., Hess, S., Hadlock, R. & Ray, P. 1969 Preliminary results of experiments with symmetric baroclinic instabilities. J. Atmos. Sci. 26 (5), 991996.
Tsai, T., Hussam, W. K., Fouras, A. & Sheard, G. J. 2016 The origin of instability in enclosed horizontally driven convection. Intl J. Heat Mass Transfer 94, 509515.
Vo, T., Montabone, L. & Sheard, G. J. 2014 Linear stability analysis of a shear layer induced by differential coaxial rotation within a cylindrical enclosure. J. Fluid Mech. 738, 299334.
Vo, T., Montabone, L. & Sheard, G. J. 2015 Effect of enclosure height on the structure and stability of shear layers induced by differential rotation. J. Fluid Mech. 765, 4581.
Whitehead, J. A. 1981 Laboratory models of circulation in shallow seas. Phil. Trans. R. Soc. Lond. A 302 (1472), 583595.
Winters, K. B. & Barkan, R. 2013 Available potential energy density for boussinesq fluid flow. J. Fluid Mech. 714, 476488.
Winters, K. B., Lombard, P. N., Riley, J. J. & D’Asaro, E. A. 1995 Available potential energy and mixing in density-stratified fluids. J. Fluid Mech. 289, 115128.
Winters, K. B. & Young, W. R. 2009 Available potential energy and buoyancy variance in horizontal convection. J. Fluid Mech. 629, 221230.
Wolfe, C. L. & Cessi, P. 2010 What sets the strength of the middepth stratification and overturning circulation in eddying ocean models. J. Phys. Oceanogr. 40 (7), 15201538.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Linear stability and energetics of rotating radial horizontal convection

  • Gregory J. Sheard (a1), Wisam K. Hussam (a1) and Tzekih Tsai (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.