Skip to main content Accessibility help
×
Home

Linear stability of katabatic Prandtl slope flows with ambient wind forcing

  • Cheng-Nian Xiao (a1) and Inanc Senocak (a1)

Abstract

We investigate the stability of katabatic slope flows over an infinitely wide and uniformly cooled planar surface subject to a downslope uniform ambient wind aloft. We adopt an extension of Prandtl’s original model for slope flows (Lykosov & Gutman, Izv. Acad. Sci. USSR Atmos. Ocean. Phys., vol. 8 (8), 1972, pp. 799–809) to derive the base flow, which constitutes an interesting basic state in stability analysis because it cannot be reduced to a single universal form independent of external parameters. We apply a linear modal analysis to this basic state to demonstrate that for a fixed Prandtl number and slope angle, two independent dimensionless parameters are sufficient to describe the flow stability. One of these parameters is the stratification perturbation number that we have introduced in Xiao & Senocak (J. Fluid Mech., vol. 865, 2019, R2). The second parameter, which we will henceforth designate the wind forcing number, is hitherto uncharted and can be interpreted as the ratio of the kinetic energy of the ambient wind aloft to the damping due to viscosity and the stabilising effect of the background stratification. For a fixed Prandtl number, stationary transverse and travelling longitudinal modes of instabilities can emerge, depending on the value of the slope angle and the aforementioned dimensionless numbers. The influence of ambient wind forcing on the base flow’s stability is complicated, as the ambient wind can be both stabilising as well as destabilising for a certain range of the parameters. Our results constitute a strong counterevidence against the current practice of relying solely on the gradient Richardson number to describe the dynamic stability of stratified atmospheric slope flows.

Copyright

Corresponding author

Email address for correspondence: senocak@pitt.edu

References

Hide All
Doran, J. C. & Horst, T. W. 1983 Observations and models of simple nocturnal slope flows. J. Atmos. Sci. 40 (3), 708717.
Doran, J. C., Horst, T. W. & Whiteman, C. D. 1990 The development and structure of nocturnal slope winds in a simple valley. Boundary-Layer Meteorol. 52 (1–2), 4168.
Ellison, T. H. & Turner, J. S. 1959 Turbulent entrainment in stratified flows. J. Fluid Mech. 6 (3), 423448.
Fedorovich, E., Gibbs, J. A. & Shapiro, A. 2017 Numerical study of nocturnal low-level jets over gently sloping terrain. J. Atmos. Sci. 74 (9), 28132834.
Fedorovich, E. & Shapiro, A. 2009 Structure of numerically simulated katabatic and anabatic flows along steep slopes. Acta Geophys. 57 (4), 9811010.
Fitzjarrald, D. R. 1984 Katabatic wind in opposing flow. J. Atmos. Sci. 41 (7), 11431158.
Fleagle, R. G. 1950 A theory of air drainage. J. Met. 7 (3), 227232.
Gollub, J. P. & Benson, S. V. 1980 Many routes to turbulent convection. J. Fluid Mech. 100 (3), 449470.
Grisogono, B. & Oerlemans, J. 2001a Katabatic flow: analytic solution for gradually varying eddy diffusivities. J. Atmos. Sci. 58 (21), 33493354.
Grisogono, B. & Oerlemans, J. 2001b A theory for the estimation of surface fluxes in simple katabatic flows. Q. J. R. Meteorol. Soc. 127 (578), 27252739.
Haiden, T. & Whiteman, C. D. 2005 Katabatic flow mechanisms on a low-angle slope. J. Appl. Meteorol. 44 (1), 113126.
Hunt, J. C. R., Wray, A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Proceedings of the 1988 Summer Program, pp. 193208. Center for Turbulence Research.
Jacobsen, D. A. & Senocak, I. 2013 Multi-level parallelism for incompressible flow computations on GPU clusters. Parallel Comput. 39 (1), 120.
Kondo, J. & Sato, T. 1988 A simple model of drainage flow on a slope. Boundary-Layer Meteorol. 43 (1–2), 103123.
Lykosov, V. N. & Gutman, L. N. 1972 Turbulent boundary-layer over a sloping underlying surface. Izv. Acad. Sci. USSR Atmos. Ocean. Phys. 8 (8), 799809.
Manins, P. C. & Sawford, B. L. 1979a Katabatic winds: a field case study. Q. J. R. Meteorol. Soc. 105 (446), 10111025.
Manins, P. C. & Sawford, B. L. 1979b A model of katabatic winds. J. Atmos. Sci. 36 (4), 619630.
Prandtl, L. 1942 Führer durch die Strömungslehre. Vieweg und Sohn.
Schörner, M., Reck, D. & Aksel, N. 2016 Stability phenomena far beyond the Nusselt flow – revealed by experimental asymptotics. Phys. Fluids 28 (2), 022102.
Shapiro, A. & Fedorovich, E. 2004 Unsteady convectively driven flow along a vertical plate immersed in a stably stratified fluid. J. Fluid Mech. 498, 333352.
Whiteman, D. C. 2000 Mountain Meteorology: Fundamentals and Applications. Oxford University Press.
Whiteman, C. D. & Zhong, S. 2008 Downslope flows on a low-angle slope and their interactions with valley inversions. Part I. Observations. J. Appl. Meteorol. Climatol. 47 (7), 20232038.
Xiao, C.-N. & Senocak, I. 2019 Stability of the Prandtl model for katabatic slope flows. J. Fluid Mech. 865, R2.
Zardi, D. & Whiteman, C. D. 2013 Diurnal mountain wind systems. In Mountain Weather Research and Forecasting, pp. 35119. Springer.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Linear stability of katabatic Prandtl slope flows with ambient wind forcing

  • Cheng-Nian Xiao (a1) and Inanc Senocak (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed