Skip to main content Accessibility help
×
×
Home

Linear stability of Taylor–Couette flow of shear-thinning fluids: modal and non-modal approaches

  • Y. Agbessi (a1), B. Alibenyahia (a2), C. Nouar (a3), C. Lemaitre (a1) and L. Choplin (a1)...
Abstract

In this paper, the response of circular Couette flow of shear-thinning fluids between two infinitely long coaxial cylinders to weak disturbances is addressed. It is highlighted by transient growth analysis. Both power-law and Carreau models are used to describe the rheological behaviour of the fluid. The first part of the paper deals with the asymptotic long-time behaviour of three-dimensional infinitesimal perturbations. Using the normal-mode approach, an eigenvalue problem is derived and solved by means of the spectral collocation method. An extensive description and the classification of eigenspectra are presented. The influence of shear-thinning effects on the critical Reynolds numbers as well as on the critical azimuthal and axial wavenumbers is analysed. It is shown that with a reference viscosity defined with the characteristic scales $\hat{{\it\mu}}_{ref}=\hat{K}(\hat{R}_{1}\hat{{\it\Omega}}_{1}/\hat{d})^{(n-1)}$ for a power-law fluid and $\hat{{\it\mu}}_{ref}=\hat{{\it\mu}}_{0}$ for a Carreau fluid, the shear-thinning character is destabilizing for counter-rotating cylinders. Moreover, the axial wavenumber increases with $\mathit{Re}_{2}$ and with shear-thinning effects. The second part investigates the short-time behaviour of the disturbance using the non-modal approach. For the same inner and outer Reynolds numbers, the amplification of the kinetic energy perturbation becomes much more important with increasing shear-thinning effects. Two different mechanisms are used to explain the transient growth, depending on whether or not there is a stratification of the angular momentum. On the Rayleigh line and for Newtonian fluids, the optimal perturbation is in the form of azimuthal streaks, which transform into Taylor vortices through the anti-lift-up mechanism. In the other cases, the optimal perturbation is initially oriented against the base flow, then it tilts to align with the base flow at optimal time. The scaling laws for the optimal energy amplification proposed in the literature for Newtonian fluids are extended to shear-thinning fluids.

Copyright
Corresponding author
Email address for correspondence: cherif.nouar@univ-lorraine.fr
References
Hide All
Alibenyahia, B., Lemaitre, C., Nouar, C. & Ait-Messaoudene, N. 2012 Revisiting the stability of circular Couette flow of shear-thinning fluids. J. Non-Newtonian Fluid Mech. 183, 3751.
Andereck, C. D., Liu, S. S. & Swinney, H. L. 1986 Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech. 164, 155183.
Antkowiak, A. & Brancher, P. 2007 On vortex rings around vortices: an optimal mechanism. J. Fluid Mech. 578, 295304.
Ashrafi, N. & Khayat, R. E. 2000 Shear-induced chaos in Taylor-vortex flow. Phys. Rev. E 61, 14551467.
Bird, R., Amstrong, R. & Hassager, O. 1987 Dynamics of Polymeric Liquids. Wiley–Interscience.
Butler, K. M. & Farrell, B. M. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A 4, 16371650.
Carreau, J. P. 1972 Rheological equations from molecular network theories. J. Rheol. 16, 99127.
Caton, F. 2006 Linear stability analysis of circular Couette flow of inelastic viscoplastic fluids. J. Non-Newtonian Fluid Mech. 134, 148154.
Cherubini, S., Robinet, J.-C., Bottaro, A. & De Palma, P. 2010 Optimal wave packets in a boundary layer and initial phases of a turbulent spot. J. Fluid Mech. 656, 231259.
Coles, D. 1965 Transition in circular Couette flow. J. Fluid Mech. 21, 385425.
Coronado-Malutti, O., Mendes, P. R. S. & Carvallo, M. S. 1986 Instability of inelastic shear-thinning liquids in a Couette flow between concentric cylinders. Chem. Engng Sci. 41, 29152923.
DiPrima, R. C. & Hall, P. 1984 Complex eigenvalues for the stability of couette flow. Proc. R. Soc. Lond. A 396 (1810), 7594.
Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability, Cambridge Mathematical Library. Cambridge University Press.
Dubrulle, B., Dauchot, O., Daviaud, F., Longaretti, P. Y., Richard, D. & Zhan, J. P. 2005 Stability and turbulent transport in Taylor–Couette flow from analysis of experimental data. Phys. Fluids 17, 095103,1–19.
Ellingsen, T. & Palm, E. 1975 Stability of linear flow. Phys. Fluids 18 (4), 487488.
Escudier, M. P., Gouldson, I. W. & Jones, D. M. 1995 Taylor vortices in Newtonian and shear-thinning liquids. Proc. R. Soc. Lond. A 449, 155176.
Gebhardt, T. & Grossmann, S. 1993 The Taylor–Couette eigenvalue problem with independently rotating cylinders. Z. Phys. B 90 (4), 475490.
Giesekus, H. 1966 Zur Stabilität von Strömungen viskoelastischer Flüssigkeiten. 1. Ebene und kreisförmige Couette-Strömung. Rheol. Acta 5, 239252.
Groisman, A. & Steinberg, V. 1998 Mechanism of elastic instability in Couette flow of polymer solutions: experiments. Phys. Fluids 10, 24512463.
Hristova, H., Roch, S., Schmid, P. & Tuckerman, S. L. 2002 Transient growth in Taylor–Couette flow. Phys. Fluids 14, 34753484.
Jastrzebski, M., Zaidani, H. A. & Wronski, S. 1992 Stability of Couette flow of liquids with power-law viscosity. Rheol. Acta 31, 264273.
Koschmieder, E. L. 1993 Bénard Cells and Taylor Vortices, Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press.
Krueger, E. R., Gross, A. & Diprima, R. C. 1966 On the relative importance of Taylor-vortex and non-axisymmetric modes in flow between rotating cylinders. J. Fluid Mech. 24, 521538.
Langford, F., Tagg, R., Kostelich, E., Swinney, H. L. & Glubitsky, M. 1988 Primary instabilities and bicriticality in flow between counter rotating cylinders. Phys. Fluids 31, 776785.
Larson, R. G., Shaqfeh, E. S. G. & Muller, S. J. 1990 A purely elastic instability in Taylor–Couette flow. J. Fluid Mech. 210, 573600.
Liu, R. & Liu, Q. S. 2011 Non-modal instability in plane Couette flow of a power law fluid. J. Fluid Mech. 676, 145171.
Liu, R. & Liu, Q. S. 2012 Non-modal stability in Hagen–Poiseuille flow of a shear-thinning fluid. Phys. Rev. E 85, 066318.
Lockett, T. J., Richardson, S. M. & Worraker, W. J. 2004 The stability of inelastic non-Newtonian fluids in Couette flow between concentric cylinders. Trans. ASME J. Fluids Engng 126, 385390.
Maretzke, S., Hof, B. & Avila, M. 2014 Transient growth in linearly stable Taylor–Couette flows. J. Fluid Mech. 742, 254290.
Meseguer, A. 2002 Energy transient growth in the Taylor–Couette problem. Phys. Fluids 14, 16551660.
Monokrousos, A., Akervik, E., Brandt, L. & Henningson, D. S. 2010 Global three-dimensional optimal disturbances in the blasius boundary – layer flow using time-steppers. J. Fluid Mech. 650, 181214.
Muller, S. J., Larson, R. G. & Shaqfeh, E. S. G. 1989 A purely elastic transition in Taylor–Couette flow. Rheol. Acta 24, 499503.
Orr, W. M. ’F. 1907 The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Proc. R. Irish Acad. 27, 9138.
Pascal, J. P. & Rasmussen, H. 1995 Stability of power law fluid flow between rotating cylinders. Dyn. Stab. Syst. 10, 6593.
Ranganathan, B. T. & Govindarajan, R. 2001 Stabilization and destabilization of channel flow by location of viscosity – stratified fluid layer. Phys. Fluids 13, 13.
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows, Applied Mathematical Sciences, vol. 142. Springer.
Shaqfeh, E. S. G., Muller, S. J. & Larson, R. G. 1992 The effect of gap width and dilute-solution properties on the viscoelastic Taylor–Couette instability. J. Fluid Mech. 235, 285317.
Shu, F. H. 1982 The Physical Universe: An Introduction to Astronomy. University Science Books.
Sinevic, V., Kuboi, R. & Nienow, A. W. 1986 Power numbers, Taylor numbers and Taylor vortices in viscous Newtonian and non-Newtonian fluids. Chem. Engng Sci. 41, 29152923.
Snyder, H. A. 1968 Stability of a rotating Couette flow. I asymmetric waveform. Phys. Fluids 11, 728734.
Tagg, R. 1994 The Couette–Taylor problem. Nonlinear Sci. Today 4, 125.
Tanner, R. 2000 Engineering Rheology. Oxford University Press.
Taylor, G. I. 1923 Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc. Lond. A 223, 289343.
Trefethen, L. N., Chapman, S. J. R., Henningson, D. S., Meseguer, A., Mullin, T. & Nieuwstadt, F. T. M.2000 Threshold amplitudes for transition to turbulence in a pipe. Numerical Analysis Report 00/17.
Van Atta, C. 1966 Exploratory measurements in spiral turbulence. J. Fluid Mech. 25, 495512.
Vitoshkin, H., Heifetz, E., Gelfgat, A. Yu. & Harnik, N. 2012 On the role of vortex stretching in energy optimal growth of three-dimensional perturbations on plane parallel shear flows. J. Fluid Mech. 707, 369380.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed