Skip to main content Accessibility help

Local scour around structures and the phenomenology of turbulence

  • Costantino Manes (a1) and Maurizio Brocchini (a2)

The scaling of the scour depth of equilibrium at the base of a solid cylinder immersed within an erodible granular bed and impinged by a turbulent shear flow is investigated here, for the first time, by means of the phenomenological theory of turbulence. The proposed theory allows the derivation of a predictive formula that (i) includes all the relevant non-dimensional parameters controlling the process, and (ii) contrary to commonly employed empirical formulae, is free from scale issues. Theoretical predictions agree very well with experimental data, shed light on unresolved issues on the physics of the problem, and clarify the effects of various dimensionless parameters controlling the scouring process.

Corresponding author
Email address for correspondence:
Hide All
Bombardelli, F. A. & Gioia, G. 2006 Scouring of granular beds by jet-driven axisymmetric turbulent cauldrons. Phys. Fluids 18, 088101.
Buffington, J. M. & Montgomery, D. R. 1997 A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers. Water Resour. Res. 33 (8), 19932029.
Chiew, Y. M.1984 Local scour at bridge piers. PhD thesis, Department of Civil Engineering, University of Auckland, Auckland, New Zealand.
Chow, V. T. 1996 Open Channel Hydraulics. McGraw-Hill.
Ettema, R.1980 Scour at bridge piers. Rep. 216. School of Engineering, The University of Auckland, Auckland, New Zealand.
Ettema, R., Constantinescu, G. & Melville, B.2011 Evaluation of bridge scour research: pier scour processes and predictions. NCHRP Rep. 175.
Ettema, R., Kirkil, G. & Muste, M. 2006 Similitude of large-scale turbulence in experiments on local scour at cylinders. J. Hydraul. Engng 132 (1), 3340.
Ettema, R., Melville, B. W. & Barkdoll, B. 1998 Scale effect in pier-scour experiments. J. Hydraul. Engng 124 (6), 639642.
Ferguson, R. 2010 Time to abandon the Manning equation? Earth Surf. Proces. Landf. 35, 18731876.
Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.
Gioia, G. & Bombardelli, F. A. 2002 Scaling and similarity in rough channel flows. Phys. Rev. Lett. 88 (1), 014501.
Gioia, G. & Bombardelli, F. A. 2005 Localized turbulent flows on scouring granular beds. Phys. Rev. Lett. 95 (1), 014501.
Gioia, G. & Chakraborty, P. 2006 Turbulent friction in rough pipes and the energy spectrum of the phenomenological theory. Phys. Rev. Lett. 96 (4), 044502.
Knight, B. & Sirovich, L. 1990 Kolmogorov inertial range for inhomogeneous turbulent flows. Phys. Rev. Lett. 65 (11), 13561359.
Kirkil, G., Constantinescu, G. & Ettema, R. 2008 Coherent structures in the flow field around a circular cylinder with scour hole. J. Hydraul. Engng 134 (5), 572587.
Kolmogorov, A. N. 1991 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc. R. Soc. Lond. A 434, 913.
Kothyari, U. C., Hager, W. H. & Oliveto, G. 2007 Generalized approach for clear-water scour at bridge foundation elements. J. Hydraul. Engng 133 (11), 12291240.
Lança, R. M, Fael, C. S., Maia, R. J., Pego, J. P. & Cardoso, A. H. 2013 Clear-water scour at comparatively large cylindrical piers. J. Hydraul. Engng 139 (11), 11171125.
Lee, S. O. & Sturm, T. W. 2009 Effect of sediment size scaling on physical modeling of bridge scour. J. Hydraul. Engng 135 (10), 793802.
Melville, B. 1984 Live-bed scour at bridge piers. J. Hydraul. Engng 110 (9), 12341247.
Melville, B. W. & Chiew, Y. M. 1999 Time scale for local scour at bridge piers. J. Hydraul. Engng 125 (1), 5965.
Melville, B. & Coleman, S. 2000 Bridge Scour. Water Resources Publications.
Moser, D. R. 1993 Kolmogorov inertial range spectra for inhomogeneous turbulence. Phys. Fluids 6 (2), 794801.
Qi, Z. X., Eames, I. & Johnson, E. R. 2014 Force acting on a square cylinder fixed in a free-surface channel flow. J. Fluid Mech. 756, 716727.
Ranga Raju, K. G., Rana, O. P. S., Asawa, G. L. & Pillai, A. S. N. 1983 Rational assessment of blockage effect in channel flow past smooth circular cylinders. J. Hydraul. Res. 21 (4), 289302.
Saddoughi, S. G. 1997 Local isotropy in complex turbulent boundary layers at high Reynolds number. J. Fluid Mech. 348, 201245.
Saddoughi, S. G. & Veeravalli, S. V. 1994 Local isotropy turbulent boundary layers at high Reynolds number. J. Fluid Mech. 268, 333372.
Sheppard, D. M. & Miller, W. Jr. 2006 Live-bed local pier scour experiments. J. Hydraul. Engng 132 (7), 635642.
Sheppard, D. M., Odeh, M. & Glasser, T. 2004 Large scale clear-water local pier scour experiments. J. Hydraul. Engng 130 (10), 957963.
Shields, A. 1936 Application of Similarity Principles and Turbulence Research to Bed-Load Movement. California Institute of Technology; translated from German.
Simarro, G., Teixeira, L. & Cardoso, A. H. 2007 Flow intensity parameter in pier scour experiments. J. Hydraul. Engng 133 (11), 12611264.
Unger, J. & Hager, W. H. 2007 Down-flow and horseshoe vortex characteristics of sediment embedded bridge piers. Exp. Fluids 42, 119.
Yang, C. T. 1996 Sediment Transport: Theory and Practice. McGraw-Hill.
Yang, C. T. & Joseph, D. D. 2009 Virtual Nikuradse. J. Turbul. 10, 128.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed