Skip to main content Accessibility help

The log behaviour of the Reynolds shear stress in accelerating turbulent boundary layers

  • Guillermo Araya (a1), Luciano Castillo (a1) and Fazle Hussain (a1)


Direct numerical simulation of highly accelerated turbulent boundary layers (TBLs) reveals that the Reynolds shear stress, $\overline{u^{\prime }v^{\prime }}^{+}$ , monotonically decreases downstream and exhibits a logarithmic behaviour (e.g.  $-\overline{u^{\prime }v^{\prime }}^{+}=-(1/A_{uv})\ln y^{+}+B_{uv}$ ) in the mesolayer region (e.g.  $50\leqslant y^{+}\leqslant 170$ ). The thickness of the log layer of $\overline{u^{\prime }v^{\prime }}^{+}$ increases with the streamwise distance and with the pressure gradient strength, extending over a large portion of the TBL thickness (up to 55 %). Simulations reveal that $V^{+}\,\partial U^{+}/\partial y^{+}\sim 1/y^{+}\sim \partial \overline{u^{\prime }v^{\prime }}^{+}/\partial y^{+}$ , resulting in a logarithmic $\overline{u^{\prime }v^{\prime }}^{+}$ profile. Also, $V^{+}\sim -y^{+}$ is no longer negligible as in zero-pressure-gradient (ZPG) flows. Other experimental/numerical data at similar favourable-pressure-gradient (FPG) strengths also show the presence of a log region in $\overline{u^{\prime }v^{\prime }}^{+}$ . This log region in $\overline{u^{\prime }v^{\prime }}^{+}$ is larger in sink flows than in other spatially developing FPG flows. The latter flows exhibit the presence of a small power-law region in $\overline{u^{\prime }v^{\prime }}^{+}$ , which is non-existent in sink flows.


Corresponding author

Email address for correspondence:


Hide All
Araya, G., Jansen, K., Meneveau, C. & Castillo, L. 2011 A dynamic multi-scale approach for turbulent inflow boundary conditions in spatially evolving flows. J. Fluid Mech. 670, 518605.
Blackwelder, R. F. & Kovasznay, L. S. G. 1972 Large-scale motion of a turbulent boundary layer during relaminarization. J. Fluid Mech. 53, 6183.
Bourassa, C. & Thomas, F. O. 2009 An experimental investigation of a highly accelerated turbulent boundary layer. J. Fluid Mech. 634, 359404.
Cal, R. & Castillo, L. 2008 Similarity analysis of favorable pressure gradient turbulent boundary layers with eventual quasilaminarization. Phys. Fluids 20, 105106.
Dixit, S. A. & Ramesh, O. N. 2010 Large-scale structures in turbulent and reverse-transitional sink flow boundary layers. J. Fluid Mech. 649, 233273.
George, W. K. & Castillo, L. 1997 Zero-pressure-gradient turbulent boundary layer. Appl. Mech. Rev. 50, 689729.
Jones, W. P. & Launder, B. E. 1972 Some properties of sink-flow turbulent boundary layers. J. Fluid Mech. 56, 337351.
Jones, M. B., Marusic, I. & Perry, A. E. 2001 Evolution and structure of sink-flow turbulent boundary layers. J. Fluid Mech. 428, 127.
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30, 741773.
Launder, B. E. 1964 Laminarization of the turbulent boundary layer in a severe acceleration. Trans. ASME: J. Appl. Mech. 31 (4), 707708.
Lund, T. S., Wu, X. & Squires, K. D. 1998 Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140, 233258.
Narasimha, R. 1983 Relaminarization – magnetohydrodynamic and otherwise. In AIAA Progress in Astronautics and Aeronautics, vol. 84, pp. 3052. AIAA.
Narasimha, R. & Sreenivasan, K. R. 1973 Relaminarization in highly accelerated turbulent boundary layers. J. Fluid Mech. 61, 417447.
Narasimha, R. & Sreenivasan, K. R. 1979 Relaminarization of fluid flows. Adv. Appl. Mech. 19, 221309.
Patel, V. C. 1965 Calibration of the Preston tube and limitation on its use in pressure gradients. J. Fluid Mech. 23, 185208.
Perry, A. E., Henbest, S. M. & Chong, M. S. 1986 A theoretical and experimental study of wall turbulence. J. Fluid Mech. 165, 163199.
Piomelli, U. & Yuan, J. 2013 Numerical simulations of spatially developing, accelerating boundary layers. Phys. Fluids 25, 101304.
Rosenhead, L.(Ed.) 1963 Laminar Boundary Layers. Oxford University Press.
Schraub, A. & Kline, S. J.1965 A study of the structure of the turbulent boundary layer with and without longitudinal pressure gradients. Report MD-12. Thermosciences Division, Mechanical Engineering Department, University of Stanford.
Spalart, P. 1986 Numerical study of sink-flow boundary layers. J. Fluid Mech. 172, 307328.
Sreenivasan, K. R. 1982 Laminarescent, relaminarizing and retransitional flows. Acta Mechanica 44, 148.
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.
Warnack, D. & Fernholz, A. 1998 The effects of a favourable pressure gradient and of the Reynolds number on an incompressible axisymmetric turbulent boundary layer. Part 2. The boundary layer with relaminarization. J. Fluid Mech. 359, 357381.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed