Skip to main content Accessibility help

Longitudinal and transverse flow over a cavity containing a second immiscible fluid

  • Clarissa Schönecker (a1) and Steffen Hardt (a1)


An analytical solution for the low-Reynolds-number flow field of a shear flow over a rectangular cavity containing a second immiscible fluid is derived. While flow of a single-phase fluid over a cavity is a standard case investigated in fluid dynamics, flow over a cavity that is filled with a second immiscible fluid has received little attention. The flow field inside the cavity is considered to define a boundary condition for the outer flow, which takes the form of a Navier slip condition with locally varying slip length. The slip-length function is determined heuristically from the related problem of lid-driven cavity flow. Based on the Stokes equations and complex analysis, it is then possible to derive a closed analytical expression for the flow field over the cavity for both the transverse and the longitudinal case. The result is a comparatively simple function, which displays the dependence of the flow field on the cavity geometry and the medium filling the cavity. The analytically computed expression agrees well with results obtained from a numerical solution of the Navier–Stokes equations.


Corresponding author

Email address for correspondence:


Hide All
Atanacković, T. M. 1977 Slow viscous flows over a flat plate with mixed boundary conditions. Ing.-Arch. 46, 157160.
Belyaev, A. V. & Vinogradova, O. I. 2010 Effective slip in pressure-driven flow past super-hydrophobic stripes. J. Fluid Mech. 652, 489499.
Biben, T. & Joly, L. 2008 Wetting on nanorough surfaces. Phys. Rev. Lett. 100, 186103.
Cherepanov, G. P. 1977 Mechanics of Brittle Fracture. McGraw-Hill.
Ciccotti, M., George, M., Ranieri, V., Wondraczek, L. & Marlière, C. 2008 Dynamic condensation of water at crack tips in fused silica glass. J. Non-Cryst. Solids 354, 564568.
Cottin-Bizonne, C., Barentin, C., Charlaix, É., Bocquet, L. & Barrat, J. L. 2004 Dynamics of simple liquids at heterogeneous surfaces: molecular-dynamics simulations and hydrodynamic description. Eur. Phys. J. E 15, 427438.
Crowdy, D. 2010 Slip length for longitudinal shear flow over a dilute periodic mattress of protruding bubbles. Phys. Fluids 22 (12), 121703.
Davis, A. M. J. & Lauga, E. 2009 Geometric transition in friction for flow over a bubble mattress. Phys. Fluids 21 (1), 011701.
Davis, A. M. J. & Lauga, E. 2010 Hydrodynamic friction of fakir-like superhydrophobic surfaces. J. Fluid Mech. 661, 402411.
Fisher, L. R., Gamble, R. A. & Middlehurst, J. 1981 The Kelvin equation and the capillary condensation of water. Nature 290, 575576.
Fisher, L. R. & Israelachvili, J. N. 1979 Direct experimental verification of the Kelvin equation for capillary condensation. Nature 277, 248249.
Galliero, G. 2010 Lennard-Jones fluid–fluid interfaces under shear. Phys. Rev. E 81, 056306.
Garabedian, P. R. 1966 Free boundary flows of a viscous liquid. Commun. Pure Appl. Maths. 19 (4), 421434.
Higdon, J. J. L. 1985 Stokes flow in arbitrary two-dimensional domains: shear flow over ridges and cavities. J. Fluid Mech. 159, 195226.
Hocking, L. M. 1976 A moving fluid interface on a rough surface. J. Fluid Mech. 76 (4), 801817.
Hu, Y., Zhang, X. & Wang, W. 2010 Boundary conditions at the liquid–liquid interface in the presence of surfactants. Langmuir 26, 1069310702.
Joseph, D. D. & Sturges, L. 1978 The convergence of biorthogonal series for biharmonic and Stokes flow edge problems: Part II. SIAM J. Appl. Maths. 34 (1), 726.
Jovanović, J., Frohnapfel, B. & Delgado, A. 2010 Viscous drag reduction with surface-embedded grooves. In Turbulence and Interactions (ed. Deville, M. O., , T.-H. & Sagaut, P.), Notes on Numerical Fluid Mechanics and Multidisciplinary Design , vol. 110, pp. 191197. Springer.
Karniadakis, G., Beskok, A. & Aluru, N. 2005 Microflows and Nanoflows. Springer.
Keldysh, M. & Sedov, L. 1937 Sur la solution effective de quelques problèmes limites pour les fonctions harmoniques. Dokl. Acad. Nauk USSR 16 (1), 710.
Lauga, E., Brenner, M. P. & Stone, H. A. 2005 Microfluidics: the no-slip boundary condition. In Handbook of Experimental Fluid Dynamics (ed. Foss, J., Tropea, C. & Yarin, A.). Springer.
Lauga, E. & Stone, H. A. 2003 Effective slip in pressure-driven Stokes flow. J. Fluid Mech. 489, 5577.
Lawrentjew, M. A. & Schabat, B. W. 1967 Methoden der komplexen Funktionentheorie. VEB Deutscher.
Lee, C., Choi, C.-H. & Kim, C.-J. 2008 Structured surfaces for a giant liquid slip. Phys. Rev. Lett. 101, 064501.
Ma, M. & Hill, R. M. 2006 Superhydrophobic surfaces. Curr. Opin. Colloid Interface Sci. 11 (4), 193202.
Moffatt, H. K. 1963 Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18 (1), 118.
Muskhelishvili, N. I. 1975 Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff International.
Muskhelishvili, N. I. 2008 Singular Integral Equations. Dover.
Navier, M. 1823 Mémoire sur les lois du mouvement des fluides. Mém. Acad. R. Sci. Inst. Fr. 6, 389440.
Nosonovsky, M. & Bhushan, B. 2008 Roughness-induced superhydrophobicity: a way to design non-adhesive surfaces. J. Phys.: Condens. Matter 20 (22), 225009.
Pan, F. & Acrivos, A. 1967 Steady flows in rectangular cavities. J. Fluid Mech. 28 (4), 643655.
Philip, J. R. 1972 Flows satisfying mixed no-slip and no-shear conditions. Z. Angew. Math. Phys. 23 (3), 353372.
Prasad, A. K. & Koseff, J. R. 1989 Reynolds number and end-wall effects on a lid-driven cavity flow. Phys. Fluids A 1 (2), 208218.
Rothstein, J. P. 2010 Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42 (1), 89109.
Sbragaglia, M. & Prosperetti, A. 2007 A note on the effective slip properties for microchannel flows with ultrahydrophobic surfaces. Phys. Fluids 19, 043603.
Shankar, P. N. 1993 The eddy structure in Stokes flow in a cavity. J. Fluid Mech. 250, 371383.
Shankar, P. N. & Deshpande, M. D. 2000 Fluid mechanics in the driven cavity. Annu. Rev. Fluid Mech. 32 (1), 93136.
Shen, C. & Floryan, J. M. 1985 Low Reynolds number flow over cavities. Phys. Fluids 28 (11), 31913202.
Smirnow, W. I. 1974 Lehrgang der höheren Mathematik, III, vol. 4. VEB Deutscher.
Sotkilava, O. V. & Cherepanov, C. P. 1974 Some problems of the nonhomogeneous elasticity theory. Prikl. Mat. Mekh. 38 (3), 539550.
Steinberger, A., Cottin-Bizonne, C., Kleimann, P. & Charlaix, E. 2007 High friction on a bubble mattress. Nat. Mater. 6, 665668.
Tsai, P., Peters, A. M., Pirat, C., Wessling, M., Lammertink, R. G. H. & Lohse, D. 2009 Quantifying effective slip length over micropatterned hydrophobic surfaces. Phys. Fluids 21 (11), 112002.
Viswanath, P. R. 2002 Aircraft viscous drag reduction using riblets. Prog. Aerosp. Sci. 38, 571600.
Yang, S., Dammer, S. M., Bremond, N., Zandvliet, H. J. W., Kooij, E. S. & Lohse, D. 2007 Characterization of nanobubbles on hydrophobic surfaces in water. Langmuir 23 (13), 70727077.
Ybert, C., Barentin, C., Cottin-Bizonne, C., Joseph, P. & Bocquet, L. 2007 Achieving large slip with superhydrophobic surfaces: scaling laws for generic geometries. Phys. Fluids 19 (12), 123601.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Longitudinal and transverse flow over a cavity containing a second immiscible fluid

  • Clarissa Schönecker (a1) and Steffen Hardt (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.