Skip to main content
    • Aa
    • Aa

Longitudinal profile of channels cut by springs

  • O. DEVAUCHELLE (a1), A. P. PETROFF (a1), A. E. LOBKOVSKY (a1) and D. H. ROTHMAN (a1)

We propose a simple theory for the longitudinal profile of channels incised by groundwater flow. The aquifer surrounding the stream is represented in two dimensions through Darcy's law and the Dupuit approximation. The model is based on the assumption that, everywhere in the stream, the shear stress exerted on the sediment by the flow is close to the minimal intensity required to displace a sand grain. Because of the coupling of the stream discharge with the water table elevation in the neighbourhood of the channel head, the stream elevation decreases as the distance from the stream's tip with an exponent of 2/3. Field measurements of steephead ravines in the Florida Panhandle conform well to this prediction.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

D. M. Abrams , A. E. Lobkovsky , A. P. Petroff , K. M. Straub , B. McElroy , D. C. Mohrig , A. Kudrolli & D. H. Rothman 2009 Growth laws for channel networks incised by groundwater flow. Nature Geosci. 2, 193196.

H. Chanson 2004 The Hydraulics of Open Channel Flow: An Introduction, 2nd edn.Elsevier Butterworth-Heinemann.

W. B. Dade 2000 Grain size, sediment transport and alluvial channel pattern. Geomorphology 35 (1–2), 119126.

B. Derrida & V. Hakim 1992 Needle models of Laplacian growth. Phys. Rev. A 45 (12), 87598765.

O. Devauchelle , L. Malverti , É. Lajeunesse , P. Y. Lagrée , C. Josserand & K. D. N. Thu-Lam 2009 Stability of bedforms in laminar flows with free surface: from bars to ripples. J. Fluid Mech. 642, 329348.

T. Dunne 1980 Formation And Controls Of Channel Networks. Prog. Phys. Geogr. 4 (2), 211239.

A. C. Fowler , N. Kopteva & C. Oakley 2007 The formation of river channels. SIAM J. Appl. Math. 67 (4), 10161040.

G. A. Fox , M. L. M. Chu-Agor & G. V. Wilson 2007 Erosion of noncohesive sediment by ground water seepage: lysimeter experiments and stability modeling. Soil Sci. Soc. Am. J. 71 (6), 18221830.

C. G. Higgins 1982 Drainage systems developed by sapping on Earth and Mars. Geology 10 (3), 147152.

A. D. Howard & C. F. McLane III 1988 Erosion of cohesionless sediment by groundwater seepage. Water Resour. Res. 24 (10), 16591674.

G. Katul , P. Wiberg , J. Albertson & G. Hornberger 2002 A mixing layer theory for flow resistance in shallow streams. Water Resour. Res. 38 (11), 1250.

R. C. Kochel & J. F. Piper 1986 Morphology of large valleys on Hawaii: evidence for groundwater sapping and comparisons with Martian valleys. J. Geophys. Res. 91 (B13), E175E192.

J. E. Laity & M. C. Malin 1985 Sapping processes and the development of theater-headed valley networks on the Colorado Plateau. Geol. Soc. Am. Bull. 96 (2), 203217.

M. P. Lamb , W. E. Dietrich , S. M. Aciego , D. J. DePaolo & M. Manga 2008 Formation of Box Canyon, Idaho, by megaflood: implications for seepage erosion on Earth and Mars. Science 320 (5879), 10671070.

M. P. Lamb , A. D. Howard , J. Johnson , K. X. Whipple , W. E. Dietrich & J. T. Perron 2006 Can springs cut canyons into rock? J. Geophys. Res 111, E07002.

C. Paola , P. L. Heller & C. L. Angevine 1992 The large-scale dynamics of grain-size variation in alluvial basins. Part 1. Theory. Basin Res. 4, 7390.

G. Parker 1978 Self-formed straight rivers with equilibrium banks and mobile bed. Part 2. The gravel river. J. Fluid Mech. 89 (1), 127146.

J. T. Perron , J. W. Kirchner & W. E. Dietrich 2009 Formation of evenly spaced ridges and valleys. Nature 460 (7254), 502505.

S. P. Rice & M. Church 2001 Longitudinal profiles in simple alluvial systems. Water Resour. Res. 37 (2), 417426.

H. H. G. Savenije 2003 The width of a bankfull channel; Lacey's formula explained. J. Hydrol. 276 (1–4), 176183.

S. A. Schumm , K. F. Boyd , C. G. Wolff & W. J. Spitz 1995 A ground-water sapping landscape in the Florida Panhandle. Geomorphology 12 (4), 281297.

S. K. Sinha & G. Parker 1996 Causes of concavity in longitudinal profiles of rivers. Water Resour. Res. 32 (5), 14171428.

L. S. Sklar & W. E. Dietrich 2008 Implications of the saltation-abrasion bedrock incision model for steady-state river longitudinal profile relief and concavity. Earth Surf. Process. Landf. 33 (7), 11291151.

R. S. Snow & R. L. Slingerland 1987 Mathematical modeling of graded river profiles. J. Geol. 95 (1), 1533.

K. X. Whipple 2001 Fluvial landscape response time: how plausible is steady-state denudation? Am. J. Sci. 301 (4–5), 313325.

M. G. Wolman & J. P. Miller 1960 Magnitude and frequency of forces in geomorphic processes. J. Geol. 68 (1), 5474.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 20 *
Loading metrics...

Abstract views

Total abstract views: 134 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th September 2017. This data will be updated every 24 hours.