Skip to main content
×
Home

Low-Reynolds-number flow past cylindrical bodies of arbitrary cross-sectional shape

  • S. H. Lee (a1) (a2) and L. G. Leal (a1)
Abstract

A numerical implementation of the method of matched asymptotic expansions is proposed to analyse two-dimensional uniform streaming flow at low Reynolds number past a straight cylinder (or cylinders) of arbitrary cross-sectional shape. General solutions for both the Stokes and Oseen equations in two dimensions are expressed in terms of a boundary distribution of fundamental single- and double-layer singularities. These general solutions are then converted to integral equations for the unknown distributions of singularity strengths by application of boundary conditions at the cylinder surface, and matching conditions between the Stokes and Oseen solutions. By solving these integral equations, using collocation methods familiar from three-dimensional application of ‘boundary integral’ methods for solutions of Stokes equation, we generate a uniformly valid approximation to the solution for the whole domain.

We demonstrate the method by considering, as numerical examples, uniform flow past an elliptic cylinder, uniform flow past a cylinder of rectangular cross-section, and uniform flow past two parallel cylinders which may be either equal in radius, or of different sizes.

Copyright
References
Hide All
Chang, I.-D. & Finn, R. 1961 On the solutions of a class of equations occurring in continuum mechanics with application to the Stokes paradox. Arch. Rat. Mech. Anal. 7, 388.
Dorrepaal, J. M. & O'Neil, M. E. 1979 The existence of free eddies in a streaming Stokes flow. Q. J. Mech. Appl. Maths 32, 95.
Finn, R. 1959 On steady-state solutions of the Navier—Stokes partial differential equations. Arch. Hat. Mech. Anal. 9, 381.
Happel, J. & Brenner, H. 1973 Low Reynolds Number Hydrodynamics. Noordhoff.
Jeffery, G. B. 1912 On a form of the solution of Laplace's equation suitable for problems relating to two spheres. Proc. R. Soc. A 87, 109.
Jeffery, G. B. 1922 The rotation of two circular cylinders in a viscous fluid. Proc. R. Soc. A 101, 169.
Kaplun, S. 1957 Low Reynolds number flow past a circular cylinder. J. Math. Mech. 6, 595.
Ladyzhenskaya, O. A. 1963 The Mathematical Theory of Viscous Incompressible Flow. Gordon & Breach, New York.
Lamb, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press.
Lee, S. H. & Leal, L. G. 1982 The motion of a sphere in the presence of deformable interface. II. A numerical study of the translation of a sphere normal to an interface. J. Colloid Interface Sci. 87, 81.
Moffatt, H. K. 1964 Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18, 1.
Oberbeck, A. J. 1876 über stationäre Flüssigkeitsbewegungen mit Berücksichtigung der inner Reibung. J. reine angew. Math. 81, 62.
O'Neill, M. E. 1964 A slow motion of viscous liquid caused by a slowly moving solid sphere. Mathematica 11, 67.
Oseen, C. W. 1927 Neuere Methoden und Ergbnisse in der Hydrodynamik. Leipzig, Akademische Verlag.
Protjdman, I. & Pearson, J. R. A. 1957 Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder. J. Fluid Mech. 2, 237.
Rallison, J. M. 1981 A numerical study of the deformation and burst of a viscous drop in general shear flows. J. Fluid Mech. 90, 465.
Robertson, C. R. & Acrivos, A. 1970 Low Reynolds number shear flow past a rotating circular cylinder. Part 1. Momentum transfer. J. Fluid Mech. 40, 685.
Shintani, K., Umemura, A. & Takano, A. 1983 Low Reynolds number flow past an elliptic cylinder. J. Fluid Mech. 1367, 277.
Umemura, A. 1982 Matched-asymptotic analysis of low Reynolds number flow past two equal circular cylinders. J. Fluid Mech. 121, 345.
Van Dyke, M. 1975 Perturbation Methods in Fluid Mechanics. Parabolic.
Yano, H. & Kieda, A. 1980 An approximate method for solving two-dimensional low Reynolds number flow past arbitrary cylindrical bodies. J. Fluid Mech. 97, 157.
Youngren, G. K. & Acrivos, A. 1975 Stokes flow past a particle of arbitrary shape: a numerical method of solution. J. Fluid Mech. 69, 377.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 15 *
Loading metrics...

Abstract views

Total abstract views: 123 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th November 2017. This data will be updated every 24 hours.