Skip to main content
×
Home
    • Aa
    • Aa

Low-Reynolds-number flow past cylindrical bodies of arbitrary cross-sectional shape

  • S. H. Lee (a1) (a2) and L. G. Leal (a1)
Abstract

A numerical implementation of the method of matched asymptotic expansions is proposed to analyse two-dimensional uniform streaming flow at low Reynolds number past a straight cylinder (or cylinders) of arbitrary cross-sectional shape. General solutions for both the Stokes and Oseen equations in two dimensions are expressed in terms of a boundary distribution of fundamental single- and double-layer singularities. These general solutions are then converted to integral equations for the unknown distributions of singularity strengths by application of boundary conditions at the cylinder surface, and matching conditions between the Stokes and Oseen solutions. By solving these integral equations, using collocation methods familiar from three-dimensional application of ‘boundary integral’ methods for solutions of Stokes equation, we generate a uniformly valid approximation to the solution for the whole domain.

We demonstrate the method by considering, as numerical examples, uniform flow past an elliptic cylinder, uniform flow past a cylinder of rectangular cross-section, and uniform flow past two parallel cylinders which may be either equal in radius, or of different sizes.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 14 *
Loading metrics...

Abstract views

Total abstract views: 104 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 27th June 2017. This data will be updated every 24 hours.