Skip to main content
×
×
Home

Magnetic micro-droplet in rotating field: numerical simulation and comparison with experiment

  • J. Erdmanis (a1), G. Kitenbergs (a1), R. Perzynski (a2) and A. Cēbers (a1) (a3)
Abstract

Magnetic droplets obtained by induced phase separation in a magnetic colloid show a large variety of shapes when exposed to an external field. However, the description of the shapes is often limited. Here, we formulate an algorithm based on three-dimensional boundary-integral equations for strongly magnetic droplets in a high-frequency rotating magnetic field, allowing us to find their figures of equilibrium in three dimensions. The algorithm is justified by a series of comparisons with known analytical results. We compare the calculated equilibrium shapes with experimental observations and find a good agreement. The main features of these observations are the oblate–prolate transition, the flattening of prolate shapes with the increase of magnetic field strength and the formation of starfish-like equilibrium shapes. We show both numerically and in experiments that the magnetic droplet behaviour may be described with a triaxial ellipsoid approximation. Directions for further research are mentioned, including the dipolar interaction contribution to the surface tension of the magnetic droplets, accounting for the large viscosity contrast between the magnetic droplet and the surrounding fluid.

Copyright
Corresponding author
Email address for correspondence: aceb@tok.sal.lv
References
Hide All
Afkami, S., Tyler, A. J., Renardy, Y., Renardy, M., Pierre, T. G. St., Woodward, R. C. & Riffle, J. S. 2010 Deformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fields. J. Fluid Mech. 663, 358384.
Arhipenko, V. I., Barkov, Yu. D. & Bashtovoi, V. G. 1978 Shape of a drop of magnetized fluid in a homogeneous magnetic field. Magnetohydrodynamics 14, 373376.
Bacri, J. C., Cebers, A. & Perzynski, R. 1994 Behavior of a magnetic fluid microdrop in a rotating magnetic field. Phys. Rev. Lett. 72, 27052708.
Bacri, J. C. & Salin, D. 1982 Instability of ferrofluid magnetic drops under magnetic field. J. Phys. 43, L771L777.
Bacri, J.-C. & Salin, D. 1983 Dynamics of the shape transition of a magnetic ferrofluid drop. J. Phys. Lett. 44, L415L420.
Bashtovoi, V. G., Pogirnitskaya, S. G. & Reks, A. 1987 Determination of the shape of a free drop of magnetic fluid in a uniform magnetic field. Magnetohydrodynamics 23, 248251.
Baygents, J. C., Rivette, N. J. & Stone, H. A. 1998 Electrohydrodynamic deformation and interaction of drop pairs. J. Fluid Mech. 368, 359375.
Beleggia, M., Graef, M. De & Millev, Y. T. 2006 The equivalent ellipsoid of a magnetized body. J. Phys. D: Appl. Phys. 39, 891899.
Blums, E., Cebers, A. & Maiorov, M. M. 1997 Magnetic Liquids. W. de G. Gruyter.
Brochu, T. & Bridson, R. 2009 Robust topological operations for dynamic explicit surfaces. SIAM J. Sci. Comput. 31 (4), 24722493.
Cebers, A 1985 Virial method of investigation of statics and dynamics of drops of magnetizable liquids. Magnetohydrodynamics 21, 1926.
Cebers, A. & Lacis, S. 1995 Magnetic fluid free surface instabilities in high-frequency rotating magnetic fields. Braz. J. Phys. 25, 101111.
Cebers, A. & Zemitis, A. 1983 Numerical simulation of mhd instability in the free surface of a gripped drop of magnetic liquid. Part I. Magnetohydrodynamics 19, 360368.
Cristini, V., Bławzdziewicz, J. & Loewenberg, M. 2001 An adaptive mesh algorithm for evolving surfaces: simulations of drop breakup and coalescence. J. Comput. Phys. 168 (2), 445463.
Dikansky, Y., Cebers, A. & Shatsky, V. P. 1990 Magnetic emulsion properties in electric and magnetic fields. 1. statics. Magnetohydrodynamics 26 (1), 2530.
Douezan, S., Guevorkian, K., Naouar, R., Dufour, S., Cuvelier, D. & Brochard-Wyart, Fr. 2011 Spreading dynamics and wetting transition of cellular aggregates. Proc. Natl Acad. Sci. USA 18, 73157320.
Erdmanis, J.2016 MDrop: Julia code for simulations of magnetic liquid droplet. Available at: doi:10.5281/zenodo.168177.
Frasca, G., Du, V., Bacri, J. C., Gazeau, F., Gay, C. & Wilhelm, C. 2014 Magnetically shaped cell aggregates: from granular to contractile materials. Soft Matt. 10, 50455054.
Janiaud, E., Elias, F., Bacri, J.-C., Cabuil, V. & Perzynski, R. 2000 Spinning ferrofluid microscopic droplets. Magnetohydrodynamics 36, 300311.
Jin, S., Lewis, R. R. & West, D. 2005 A comparison of algorithms for vertex normal computation. Vis. Comput. 21 (1–2), 7182.
Keaveny, E. E. & Shelley, M. J. 2011 Applying a second-kind boundary integral equation for surface tractions in stokes flow. J. Comput. Phys. 230, 21412159.
Kitenbergs, Guntars2015 Hydrodynamic instabilities in microfluidic magnetic fluid flows. PhD thesis, University of Pierre and Marie Curie, University of Latvia.
Landau, L. D. & Lifshitz, E. M. 1960 Electrodynamics of Continuous Media. Pergamon.
Massart, R. 1981 Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 17 (2), 12471248.
Morozov, K. I., Engel, A. & Lebedev, A. V. 2002 Shape transformations in rotating ferrofluid drops. Europhys. Lett. 58, 229235.
Morozov, K. I. & Lebedev, A. V. 2000 Bifurcations of the shape of a magnetic fluid droplet in a rotating magnetic field. J. Expl Theor. Phys. 91, 10291032.
Persson, P. O. & Strang, G. 2004 A simple mesh generator in MATLAB. SIAM Rev. 46 (2), 329345.
Pozrikidis, C. 2003 Practical Guide to Boundary Element Methods with Software Library BEMLIB. Chapman and Hall.
Pozrikidis, C. 2000 Theoretical and computational aspects of the self-induced motion of three-dimensional vortex sheets. J. Fluid Mech. 425, 335366.
Pozrikidis, C. 2001 Interfacial dynamics for stokes flow. J. Comput. Phys. 169 (2), 250301.
Rosensweig, R. E. 1985 Ferrohydrodynamics. Cambridge University Press.
Rowghanian, P., Meinhart, C. D. & Camps, O. 2016 Dynamics of ferrofluid drop deformations under spatially uniform magnetic fields. J. Fluid Mech. 802, 245262.
Sandre, O., Browaeys, J., Perzynski, R., Bacri, J. C., Cabuil, V. & Rosensweig, R. E. 1999 Assembly of microscopic highly magnetic droplets: magnetic alignment versus viscous drag. Phys. Rev. E 59, 17361746.
Seeman, R., Brinkman, M., Pfohl, Th. & Herminghaus, S. 2012 Droplet based microfluidics. Rep. Prog. Phys. 75, 016601.
Taylor, G. I. 1964 Disintegration of water drops in an electric field. Proc. R. Soc. Lond. A 280, 383397.
Timonen, J. V. I., Latikka, M., Leibler, L., Ras, R. H. A. & Ikkala, O. 2013 Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces. Science 341 (6143), 253257.
Zakinyan, A. & Dikansky, Yu. 2011 Drops deformation and magnetic permeability of a ferrofluid emulsion. Colloids Surf. A 380 (13), 314318.
Zinchenko, A., Rother, M. A. & Davis, R. H. 1997 A novel boundary-integral algorithm for viscous interaction of deformable drops. Phys. Fluids 9 (6), 14931511.
Zinchenko, A., Rother, M. A. & Davis, R. H. 1999 Cusping, capture, and breakup of interacting drops by a curvatureless boundary-integral algorithm. J. Fluid Mech. 391, 249292.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 7
Total number of PDF views: 131 *
Loading metrics...

Abstract views

Total abstract views: 297 *
Loading metrics...

* Views captured on Cambridge Core between 22nd May 2017 - 21st May 2018. This data will be updated every 24 hours.