Skip to main content
×
Home
    • Aa
    • Aa

Magnetohydrodynamic turbulent flow in a channel at low magnetic Reynolds number

  • DONGHOON LEE (a1) and HAECHEON CHOI (a1)
Abstract

Effects of the Lorentz force on near-wall turbulence structures are investigated using the direct numerical simulation technique with the assumption of no induced magnetic field at low magnetic Reynolds number. A uniform magnetic field is applied in the streamwise (x), wall-normal (y) or spanwise (z) direction to turbulent flow in an infinitely long channel with non-conducting walls. The Lorentz force induced from the magnetic field suppresses the dynamically significant coherent structures near the wall. The skin friction decreases with increasing streamwise and spanwise magnetic fields, whereas it increases owing to the Hartmann effect when the strength of the wall-normal magnetic field exceeds a certain value. All the turbulence intensities and the Reynolds shear stress decrease with the wall-normal and spanwise magnetic fields, but the streamwise velocity fluctuations increase with the streamwise magnetic field although all other turbulence intensities decrease. It is also shown that the wall-normal magnetic field is much more effective than the streamwise and spanwise magnetic fields in reducing turbulent fluctuations and suppressing the near-wall streamwise vorticity, even though the wall-normal magnetic field interacts directly with the mean flow and results in drag increase at strong magnetic fields. In the channel with a strong streamwise magnetic field, two-dimensional streamwise velocity fluctuations u(y, z) exist, even after other components of the velocity fluctuations nearly vanish. In the cases of strong wall-normal and spanwise magnetic fields, all turbulence intensities, the Reynolds shear stress and vorticity fluctuations decrease rapidly and become zero. The turbulence structures are markedly elongated in the direction of the applied magnetic field when it is strong enough. It is shown that this elongation of the structures is associated with a rapid decrease of the Joule dissipation in time.

Copyright
Corresponding author
Author to whom correspondence should be addressed: e-mail choi@socrates.snu.ac.kr. Also at National CRI center for Turbulence and Flow Control Research, Institute of Advanced Machinery and Design, Seoul National University, Korea.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 50 *
Loading metrics...

Abstract views

Total abstract views: 128 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 27th May 2017. This data will be updated every 24 hours.