Skip to main content Accessibility help
×
Home

Marangoni-driven film climbing on a draining pre-wetted film

  • Nan Xue (a1), Min Y. Pack (a1) (a2) and Howard A. Stone (a1)

Abstract

Marangoni flow is the motion induced by a surface tension gradient along a fluid–fluid interface. In this study, we report a Marangoni flow generated when a bath of surfactant contacts a pre-wetted film of deionized water on a vertical substrate. The thickness profile of the pre-wetted film is set by gravitational drainage and so varies with the drainage time. The surface tension is lower in the bath due to the surfactant, and thus a liquid film climbs upwards along the vertical substrate due to the surface tension difference. Particle tracking velocimetry is performed to measure the dynamics in the film, where the mean fluid velocity reverses direction as the draining film encounters the front of the climbing film. The effect of the surfactant concentration and the pre-wetted film thickness on the film climbing is then studied. High-speed interferometry is used to measure the front position of the climbing film and the film thickness profile. As a result, higher surfactant concentration induces a faster and thicker climbing film. Also, for high surfactant concentrations, where Marangoni driving dominates, increasing the film thickness increases the rise speed of the climbing front, since viscous resistance is less important. In contrast, for low surfactant concentrations, where Marangoni driving balances gravitational drainage, increasing the film thickness decreases the rise speed of the climbing front while enhancing gravitational drainage. We rationalize these observations by utilizing a dimensionless parameter that compares the magnitudes of the Marangoni stress and gravitational drainage. A model is established to analyse the climbing front, either in the Marangoni-driving-dominated region or in the Marangoni-balanced drainage region. Our work highlights the effects of the gravitational drainage on the Marangoni flow, both by setting the thickness of a pre-wetted film and by resisting the film climbing.

Copyright

Corresponding author

Email address for correspondence: hastone@princeton.edu

References

Hide All
Al-Soufi, W., Piñeiro, L. & Novo, M. 2012 A model for monomer and micellar concentrations in surfactant solutions: application to conductivity, NMR, diffusion, and surface tension data. J. Colloid Interface Sci. 370 (1), 102110.
Angelini, T. E., Roper, M., Kolter, R., Weitz, D. A. & Brenner, M. P. 2009 Bacillus subtilis spreads by surfing on waves of surfactant. Proc. Natl Acad. Sci. USA 106 (43), 1810918113.
Bhamla, M. S., Giacomin, C. E., Balemans, C. & Fuller, G. G. 2014 Influence of interfacial rheology on drainage from curved surfaces. Soft Matt. 10 (36), 69176925.
Binks, B. P., Clint, J. H., Fletcher, P. D. I., Lees, T. J. G. & Taylor, P. 2006 Growth of gold nanoparticle films driven by the coalescence of particle-stabilized emulsion drops. Langmuir 22 (9), 41004103.
Blair, D. & Dufresne, E.2008 The Matlab particle tracking code repository. Particle-tracking code. Available at: http://physics.georgetown.edu/matlab.
Cazabat, A. M., Heslot, F., Carles, P. & Troian, S. M. 1992 Hydrodynamic fingering instability of driven wetting films. Adv. Colloid Interface Sci. 39, 6175.
Cazabat, A. M., Heslot, F., Troian, S. M. & Carles, P. 1990 Fingering instability of thin spreading films driven by temperature gradients. Nature 346 (6287), 824826.
Craster, R. V. & Matar, O. K. 2009 Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81 (3), 11311198.
Cwiklik, L. 2016 Tear film lipid layer: a molecular level view. Biochim. Biophys. Acta, Biomembr. 1858 (10), 24212430.
D’Arcy, J. M., Tran, H. D., Tung, V. C., Tucker-Schwartz, A. K., Wong, R. P., Yang, Y. & Kaner, R. B. 2010 Versatile solution for growing thin films of conducting polymers. Proc. Natl Acad. Sci. USA 107 (46), 1967319678.
Daripa, P. & Paşa, G. 2009 The thickening effect of interfacial surfactant in the drag-out coating problem. J. Stat. Mech. 2009 (07), L07002.
Fanton, X., Cazabat, A. M. & Quéré, D. 1996 Thickness and shape of films driven by a Marangoni flow. Langmuir 12 (24), 58755880.
Filoche, M., Tai, C. & Grotberg, J. B. 2015 Three-dimensional model of surfactant replacement therapy. Proc. Natl Acad. Sci. USA 112 (30), 92879292.
Fletcher, P. D. I. & Holt, B. L. 2011 Controlled silanization of silica nanoparticles to stabilize foams, climbing films, and liquid marbles. Langmuir 27 (21), 1286912876.
Grotberg, J. B. 1994 Pulmonary flow and transport phenomena. Annu. Rev. Fluid Mech. 26 (1), 529571.
Halpern, D. & Grotberg, J. B. 1992 Dynamics and transport of a localized soluble surfactant on a thin film. J. Fluid Mech. 237, 111.
He, S. & Ketterson, J. B. 1995 Surfactant-driven spreading of a liquid on a vertical surface. Phys. Fluids 7 (11), 26402647.
Heidari, A. H., Braun, R. J., Hirsa, A. H., Snow, S. A. & Naire, S. 2002 Hydrodynamics of a bounded vertical film with nonlinear surface properties. J. Colloid Interface Sci. 253 (2), 295307.
Jeffreys, H. 1930 The draining of a vertical plate. Proc. Camb. Phil. Soc. 26, 204205.
Jensen, O. E. & Grotberg, J. B. 1992 Insoluble surfactant spreading on a thin viscous film: shock evolution and film rupture. J. Fluid Mech. 240, 259288.
Jensen, O. E. & Grotberg, J. B. 1993 The spreading of heat or soluble surfactant along a thin liquid film. Phys. Fluids A 5 (1), 5868.
Jin, X., Jiang, M., Shan, X., Pei, Z. & Chen, Z. 2008 Adsorption of methylene blue and orange II onto unmodified and surfactant-modified zeolite. J. Colloid Interface Sci. 328 (2), 243247.
Johnson, D. D. Jr., Kang, B., Vigorita, J. L., Amram, A. & Spain, E. M. 2008 Marangoni flow of Ag nanoparticles from the fluid–fluid interface. J. Phys. Chem. A 112 (39), 93189323.
Kataoka, D. E. & Troian, S. M. 1998 Stabilizing the advancing front of thermally driven climbing films. J. Colloid Interface Sci. 203 (2), 335344.
Ludviksson, V. & Lightfoot, E. N. 1971 The dynamics of thin liquid films in the presence of surface-tension gradients. AIChE J. 17 (5), 11661173.
Luo, D., Wang, F., Zhu, J., Cao, F., Liu, Y., Li, X., Willson, R. C., Yang, Z., Chu, C. & Ren, Z. 2016 Nanofluid of graphene-based amphiphilic Janus nanosheets for tertiary or enhanced oil recovery: high performance at low concentration. Proc. Natl Acad. Sci. USA 113 (28), 77117716.
Mayya, K. S. & Sastry, M. 1999 A new technique for the spontaneous growth of colloidal nanoparticle superlattices. Langmuir 15 (6), 19021904.
Münch, A. & Bertozzi, A. L. 1999 Rarefaction–undercompressive fronts in driven films. Phys. Fluids 11 (10), 28122814.
Schneemilch, M. & Cazabat, A. M. 2000 Shock separation in wetting films driven by thermal gradients. Langmuir 16 (25), 98509856.
Sweeney, D. F., Millar, T. J. & Raju, S. R. 2013 Tear film stability: a review. Exp. Eye Res. 117, 2838.
Thomson, J. 1855 On certain curious motions observable at the surfaces of wine and other alcoholic liquors. Phil. Mag. 10 (67), 330333.
Zhang, J. & Meng, Y. 2014 Stick-slip friction of stainless steel in sodium dodecyl sulfate aqueous solution in the boundary lubrication regime. Tribol. Lett. 56 (3), 543552.
Zhang, J., Wang, L., Chao, X., Velankar, S. S. & Asher, S. A. 2013 Vertical spreading of two-dimensional crystalline colloidal arrays. J. Mater. Chem. C 1 (38), 60996102.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
VIDEO
Movies

Xue et al. supplementary movie 1
Film climbing as inserting a dyed pre-wetted film on a glass substrate into a bath of dyed 1 mM SDS solution. Real time.

 Video (732 KB)
732 KB
VIDEO
Movies

Xue et al. supplementary movie 2
Particle tracking velocimetry for the 1 mM SDS solution in the bath. Real time (from 10 s to 14 s).

 Video (6.9 MB)
6.9 MB
VIDEO
Movies

Xue et al. supplementary movie 3
Interferometric movie for the measurement of film front position, for 3 mM SDS solution in the bath. ×0.1 real time.

 Video (676 KB)
676 KB
VIDEO
Movies

Xue et al. supplementary movie 4
Interferometric movie for the measurement of film front position, for 0.3 mM SDS solution in the bath. ×2 real time.

 Video (1.4 MB)
1.4 MB
VIDEO
Movies

Xue et al. supplementary movie 5
Interferometric movie for the measurement of film thickness profile, for 10 mM SDS solution in the bath. ×5 real time.

 Video (4.0 MB)
4.0 MB
VIDEO
Movies

Xue et al. supplementary movie 6
Interferometric movie for the measurement of film thickness profile, for 3 mM SDS solution in the bath. ×5 real time.

 Video (4.0 MB)
4.0 MB
VIDEO
Movies

Xue et al. supplementary movie 7
Interferometric movie for the measurement of film thickness profile, for 1 mM SDS solution in the bath. ×5 real time.

 Video (4.0 MB)
4.0 MB
VIDEO
Movies

Xue et al. supplementary movie 8
Interferometric movie for the measurement of film thickness profile, for 0.3 mM SDS solution in the bath. ×5 real time.

 Video (4.1 MB)
4.1 MB
VIDEO
Movies

Xue et al. supplementary movie 9
Interferometric movie for the measurement of film front position with a large field of view, for 3 mM SDS solution in the bath. ×0.1 real time.

 Video (681 KB)
681 KB

Marangoni-driven film climbing on a draining pre-wetted film

  • Nan Xue (a1), Min Y. Pack (a1) (a2) and Howard A. Stone (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed