Skip to main content
×
×
Home

Mass transfer effects on linear wave propagation in diluted bubbly liquids

  • D. Fuster (a1) and F. Montel (a2)
Abstract

In this article we investigate the importance of mass transfer effects in the effective acoustic properties of diluted bubbly liquids. The classical theory for wave propagation in bubbly liquids for pure gas bubbles is extended to capture the influence of mass transfer on the effective phase speed and attenuation of the system. The vaporization flux is shown to be important for systems close to saturation conditions and at low frequencies. We derive a general expression for the transfer function that relates bubble radius and pressure changes, solving the linear version of the conservation equations inside, outside and at the bubble interface. Simplified expressions for various limiting situations are derived in order to get further insight about the validity of the common assumptions typically applied in bubble dynamic models. The relevance of the vapour content, the mass transfer flux across the interface and the effect of variations of the bubble interface temperature is discussed in terms of characteristic non-dimensional numbers. Finally we derive the various conditions that must be satisfied in order to reach the low-frequency limit solutions where the phase speed no longer depends on the forcing frequency.

Copyright
Corresponding author
Email address for correspondence: fuster@dalembert.upmc.fr
References
Hide All
Ainslie, M. A. & Leighton, T. G. 2011 Review of scattering and extinction cross-sections, damping factors, and resonance frequencies of a spherical gas bubble. J. Acoust. Soc. Am. 130 (5), 31843208.
Ando, K., Colonius, T. & Brennen, C. E. 2009 Improvement of acoustic theory of ultrasonic waves in dilute bubbly liquids. J. Acoust. Soc. Am. 126, 6974.
Ardron, K. H. & Duffey, R. B. 1978 Acoustic wave propagation in a flowing liquid–vapour mixture. Intl J. Multiphase Flow 4 (3), 303322.
Chapman, R. B. & Plesset, M. S. 1971 Thermal effects in the free oscillations of gas bubbles. Trans. ASME J. Basic Engng 93, 373376.
Cheyne, S. A., Stebbings, C. T. & Roy, R. A. 1995 Phase velocity measurements in bubbly liquids using a fiber optic laser interferometer. J. Acoust. Soc. Am. 97 (3), 16211624.
Commander, K. W. & Prosperetti, A. 1989 Linear pressure waves in bubbly liquids: comparison between theory and experiments. J. Acoust. Soc. Am. 85, 732746.
Coste, C., Laroche, C. & Fauve, S. 1990 Sound propagation in a liquid with vapour bubbles. Europhys. Lett. 11 (4), 343347.
Fuster, D. & Colonius, T. 2011 Modeling bubble clusters in compressible liquids. J. Fluid Mech. 688, 352589.
Fuster, D., Conoir, J. M. & Colonius, T. 2014 Effect of direct bubble–bubble interactions on linear-wave propagation in bubbly liquids. Phys. Rev. E 90 (6), 063010.
Fuster, D., Hauke, G. & Dopazo, C. 2010 Influence of accommodation coefficient on nonlinear bubble oscillations. J. Acoust. Soc. Am. 128, 510.
Gumerov, N. A., Hsiao, C. T. & Goumilevski, A. G.2001 Determination of the accomodation coefficient using vapor/gas bubble dynamics in an acoustic field. Technical Report 1. California Institute of Technology, DYNAFLOW, Inc., Fulton, MD; see also URL http://gltrs.grc.nasa.gov/GLTRS (last viewed 9 May 2015).
Hao, Y. & Prosperetti, A. 1999 The dynamics of vapor bubbles in acoustic pressure fields. Phys. Fluids 11 (8), 20082019.
Hauke, G., Fuster, D. & Dopazo, C. 2007 Dynamics of a single cavitating and reacting bubble. Phys. Rev. E 75, 066310,1-14.
Hertz, H. 1982 Über die Verdunstug der Flüssigkeiten, Inbesondere des Quecksilbers im lufteren Räume [On the evaporation of fluids, especially of mercury, in vacuum spaces]. Ann. Phys. 17, 177193.
Kieffer, S. W. 1977 Sound speed in liquid–gas mixtures: water–air and water–steam. J. Geophys. Res. 82 (20), 28952904.
Knudsen, M. 1915 Maximum rate of vaporization of mercury. Ann. Phys. 47, 697705.
Kuster, G. T. & Toksöz, M. N. 1974 Velocity and attenuation of seismic waves in two-phase media: Part I. Theoretical formulations. Geophysics 39 (5), 587606.
Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics. Pergamon.
Leroy, V., Strybulevych, A., Page, J. H. & Scanlon, M. G. 2008 Sound velocity and attenuation in bubbly gels measured by transmission experiments. J. Acoust. Soc. Am. 123, 19311940.
Lynnworth, L. C. 2013 Ultrasonic Measurements for Process Control: Theory, Techniques, Applications. Academic.
Mecredy, R. C  & Hamilton, L. J. 1972 The effects of nonequilibrium heat, mass and momentum transfer on two-phase sound speed. Intl J. Heat Mass Transfer 15 (1), 6172.
Preston, A. T., Colonius, T. & Brennen, C. E. 2007 A reduced order model of diffusive effects on the dynamics of bubbles. Phys. Fluids 19, 123302,1-19.
Prosperetti, A. 1977 Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids. J. Acoust. Soc. Am. 61, 1727.
Prosperetti, A. 1982 A generalization of the Rayleigh–Plesset equation of bubble dynamics. Phys. Fluids 25 (3), 409410.
Prosperetti, A. 2015 The speed of sound in a gas–vapor bubbly liquid. Interface Focus 20140024, doi:10.1098/rsfs.2015.0024.
Prosperetti, A., Crum, L. A. & Commander, K. W. 1988 Nonlinear bubble dynamics. J. Acoust. Soc. Am. 83, 502514.
Prosperetti, A. & Hao, Y. 2002 Vapor bubbles in flow and acoustic fields. Ann. N.Y. Acad Sci. 974 (1), 328347.
Sangani, A. S. 1991 A pairwise interaction theory for determining the linear acoustic properties of dilute bubbly liquids. J. Fluid Mech. 232, 221284.
Saurel, R., Petitpas, F. & Abgrall, R. 2008 Modelling phase transition in metastable liquids: application to cavitating and flashing flows. J. Fluid Mech. 607, 313350.
Silberman, E. 1957 Sound velocity and attenuation in bubbly mixtures measured in standing wave tubes. J. Acoust. Soc. Am. 29 (8), 925933.
Van Wijngaarden, L. 1968 On the equations of motion for mixtures of liquid and gas bubbles. J. Fluid Mech. 33 (3), 465474.
Wilson, P. S., Roy, R. A. & Carey, W. M. 2005 Phase speed and attenuation in bubbly liquids inferred from impedance measurements near the individual bubble resonance frequency. J. Acoust. Soc. Am. 117 (4), 18951910.
Wood, A. B. 1930 A Textbook of Sound. G. Bell and Sons.
Yasui, K. 1997 Alternative model of single sonoluminiscence. Phys. Rev. E 56 (6), 67506760.
Zhang, D. Z. & Prosperetti, A. 1997 Momentum and energy equations for disperse two-phase flows and their closure for dilute suspensions. Intl J. Multiphase Flow 23, 425453.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed