Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T07:34:09.787Z Has data issue: false hasContentIssue false

Measurements of the velocity field of a wing-tip vortex, wandering in grid turbulence

Published online by Cambridge University Press:  25 April 2008

S. C. C. BAILEY
Affiliation:
University of Ottawa, Department of Mechanical Engineering, 161 Louis Pasteur, Ottawa, Ontario, K1N 6N5, Canadastavros.tavoularis@uottawa.ca
S. TAVOULARIS
Affiliation:
University of Ottawa, Department of Mechanical Engineering, 161 Louis Pasteur, Ottawa, Ontario, K1N 6N5, Canadastavros.tavoularis@uottawa.ca

Abstract

Velocity measurements were performed in a wing-tip vortex wandering in free-stream turbulence using two four-wire hot-wire probes. Vortex wandering was well represented by a bi-normal probability density with increasing free-stream turbulence resulting in increased amplitude of wandering. The most dominant wavelength of wandering was found to remain unaffected by free-stream conditions. Two-point velocity measurements were used to reconstruct the vortex velocity profile in a frame of reference wandering with the vortex. Increasing turbulence intensity was found to increase the rate of decay of the vortex peak circumferential velocity while the radial location of this peak velocity remained unchanged. These results are consistent with several possible vortex decay mechanisms, including the stripping of vorticity by azimuthally aligned vortical structures, transfer of angular momentum from the vortex to these structures during their formation and the deformation and breakup of the vortex by strong free-stream eddies.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bailey, S. C. C. 2006 The interaction of a wing-tip vortex and free-stream turbulence. PhD thesis, University of Ottawa.Google Scholar
Bailey, S. C. C., Tavoularis, S. & Lee, B. H. K. 2006 Effects of freestream turbulence on wing-tip vortex formation and near field. J. Aircraft 43, 12821291.CrossRefGoogle Scholar
Baker, G. R., Barker, S. J., Bofah, K. K. & Saffman, P. G. 1974 Laser anemometer measurements of trailing vortices in water. J. Fluid Mech. 65, 325336.CrossRefGoogle Scholar
Bandyopadhyay, P. R., Stead, D. J. & Ash, R. L. 1991 Organized nature of a turbulent trailing vortex. AIAA J. 29, 16271633.CrossRefGoogle Scholar
Beninati, M. L. & Marshall, J. S. 2005 An experimental study of the effect of free-stream turbulence on a trailing vortex. Exps. Fluids 38, 244257.CrossRefGoogle Scholar
Bradshaw, P. 1969 The analogy between streamline curvature and buoyancy in turbulent shear flow. J. Fluid Mech. 36, 177191.CrossRefGoogle Scholar
Chow, J. S., Zilliac, G. G. & Bradshaw, P. 1994 Turbulence measurements in the near-field of a wingtip vortex. In Proc. Turbulence in Complex Flows, pp. 6178. ASME.Google Scholar
Comte-Bellot, G. & Corrsin, S. 1966 The use of a contraction to improve the isotropy of grid-generated turbulence. J. Fluid Mech. 25, 657682.CrossRefGoogle Scholar
Corsiglia, V. R., Schwind, R. G. & Chigier, N. A. 1973 Rapid scanning, three-dimensional hot-wire anemometer surveys of wing-tip vortices. J. Aircraft 10 (12), 752757.CrossRefGoogle Scholar
Cotel, A. J. & Breidenthal, R. E. 1999 Turbulence inside a vortex. Phys. Fluids 11, 30263029.CrossRefGoogle Scholar
Devenport, W. J., Rife, M. C., Stergios, I. L. & Follin, G. J. 1996 The structure and development of a wing-tip vortex. J. Fluid Mech. 312, 67106.CrossRefGoogle Scholar
Döbbeling, K., Lenze, B. & Leuckel, W. 1990 Basic considerations concerning the construction and usage of multiple hot-wire probes for highly turbulent three-dimensional flows. Meas. Sci. Technol. 1, 924933.CrossRefGoogle Scholar
Fabre, D. & Jacquin, L. 2004 Viscous instabilities in trailing vortices at large swirl numbers. J. Fluid Mech. 500, 239262.CrossRefGoogle Scholar
Fabre, D., Sipp, D. & Jacquin, L. 2006 Kelvin waves and the singular modes of the lamboseen vortex. J. Fluid Mech. 551, 235274.CrossRefGoogle Scholar
Green, S. I. 1995 Fluid Vortices, chap. Wing Tip Vortices, pp. 427470. Kluwer.CrossRefGoogle Scholar
Green, S. I. & Acosta, A. J. 1991 Unsteady flow in trailing vortices. J. Fluid Mech. 227, 107134.CrossRefGoogle Scholar
Gursul, I. & Xie, W. 1999 Origin of vortex wandering over delta wings. J. Aircraft 37, 348350.CrossRefGoogle Scholar
Heaton, C. J. & Peake, N. 2007 Transient growth in vortices with axial flow. J. Fluid Mech. 587, 271301.CrossRefGoogle Scholar
Heyes, A. L., Jones, R. F. & Smith, D. A. R. 2004 Wandering of wing-tip vortices. In Proc. 12th Intl Symp. on the Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal.Google Scholar
Holzäpfel, F., Hofbauer, T., Darracq, D., Moet, H., Garnier, F. & Gago, C. F. 2003 Analysis of wake vortex decay mechanisms in the atmosphere. Aerospace Sci. Technol. 7, 263275.CrossRefGoogle Scholar
Jacquin, L., Fabre, D., Geffroy, P. & Coustols, E. 2001 The properties of a transport aircraft wake in the extended near field: An experimental study. AIAA Paper 2001-1038.CrossRefGoogle Scholar
Jacquin, L. & Pantano, C. 2002 On the persistence of trailing vortices. J. Fluid Mech. 471, 159168.CrossRefGoogle Scholar
Lacaze, L., Ryan, K. & Le Dizès, S. 2007 Elliptic instability in a strained batchelor vortex. J. Fluid Mech. 577, 341361.CrossRefGoogle Scholar
Marshall, J. S. 1997 The flow induced by periodic vortex rings wrapped around a columnar vortex core. J. Fluid Mech. 345, 130.CrossRefGoogle Scholar
Marshall, J. S. & Beninati, M. L. 2000 Turbulence evolution in vortex-dominated flows. In Nonlinear Instability, Chaos and Turbulence II, pp. 140. WIT Press.Google Scholar
Marshall, J. S. & Beninati, M. L. 2005 External turbulence interaction with a columnar vortex. J. Fluid Mech. 540, 221245.CrossRefGoogle Scholar
Melander, M. V. & Hussain, F. 1993 Coupling between a coherent structure and fine-scale turbulence. Phys. Rev. E 48, 26692689.Google ScholarPubMed
Miyazaki, T. & Hunt, J. C. R. 2000 Linear and nonlinear interactions between a columnar vortex and external turbulence. J. Fluid Mech. 402, 349378.CrossRefGoogle Scholar
Phillips, W. R. C. 1981 The turbulent trailing vortex during roll-up. J. Fluid Mech. 105, 451467.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Pradeep, D. S. & Hussain, F. 2006 Transient growth of perturbations in a vortex column. J. Fluid Mech. 550, 251288.CrossRefGoogle Scholar
Rae, W. H. & Pope, A. 1984 Low Speed Wind Tunnel Testing, 2nd Ed. John Wiley and Sons.Google Scholar
Rokhsaz, K., Foster, S. R. & Miller, L. S. 2000 Exploratory study of aircraft wake vortex filaments in a water tunnel. J. Aircraft 37, 10221027.CrossRefGoogle Scholar
Rossow, V. J. 1999 Lift-generated vortex wakes of subsonic transport aircraft. Prog. Aerospace Sci. 35, 507660.CrossRefGoogle Scholar
Sarpkaya, T. & Daly, J. J. 1987 Effect of ambient turbulence on trailing vortices. J. Aircraft 6, 399404.CrossRefGoogle Scholar
Singh, P. I. & Uberoi, M. S. 1976 Experiments on vortex stability. Phys. Fluids 19, 18581863.CrossRefGoogle Scholar
Spalart, P. R. 1998 Airplane trailing vortices. Annu. Rev. Fluid Mech. 30, 107138.CrossRefGoogle Scholar
Squire, H. B. 1965 The growth of a vortex in turbulent flow. Aeronaut. Q. 16, 302306.CrossRefGoogle Scholar
Sreenivasan, K. R., Tavoularis, S., Henry, R. & Corrsin, S. 1980 Temperature fluctuations and scales in grid-generated turbulence. J. Fluid Mech. 100, 597621.CrossRefGoogle Scholar
Takahashi, N., Ishii, H. & Miyazaki, T. 2005 The influence of turbulence on a columnar vortex. Phys. Fluids 17, 035105.1035105.14.CrossRefGoogle Scholar
Tavoularis, S. 2005 Measurement in Fluid Mechanics. Cambridge University Press.Google Scholar
Vukoslavčević, P. V., Petrovic, D. V. & Wallace, J. M. 2004 An analytical approach to the uniqueness problem of hot-wire probes to measure simultaneously three velocity components. Meas. Sci. Technol. 15, 18481854.CrossRefGoogle Scholar
Wittmer, K. S., Devenport, W. J. & Zsoldos, J. S. 1998 A four-sensor hot-wire probe system for three-component velocity measurements. Exps. Fluids 24, 416423.CrossRefGoogle Scholar