Skip to main content Accessibility help

Metric for attractor overlap

  • Rishabh Ishar (a1), Eurika Kaiser (a2), Marek Morzyński (a3), Daniel Fernex (a4), Richard Semaan (a4), Marian Albers (a5), Pascal S. Meysonnat (a5), Wolfgang Schröder (a5) (a6) and Bernd R. Noack (a4) (a7) (a8) (a9)...


We present the first general metric for attractor overlap (MAO) facilitating an unsupervised comparison of flow data sets. The starting point is two or more attractors, i.e. ensembles of states representing different operating conditions. The proposed metric generalizes the standard Hilbert-space distance between two snapshot-to-snapshot ensembles of two attractors. A reduced-order analysis for big data and many attractors is enabled by coarse graining the snapshots into representative clusters with corresponding centroids and population probabilities. For a large number of attractors, MAO is augmented by proximity maps for the snapshots, the centroids and the attractors, giving scientifically interpretable visual access to the closeness of the states. The coherent structures belonging to the overlap and disjoint states between these attractors are distilled by a few representative centroids. We employ MAO for two quite different actuated flow configurations: a two-dimensional wake with vortices in a narrow frequency range and three-dimensional wall turbulence with a broadband spectrum. In the first application, seven control laws are applied to the fluidic pinball, i.e. the two-dimensional flow around three circular cylinders whose centres form an equilateral triangle pointing in the upstream direction. These seven operating conditions comprise unforced shedding, boat tailing, base bleed, high- and low-frequency forcing as well as two opposing Magnus effects. In the second example, MAO is applied to three-dimensional simulation data from an open-loop drag reduction study of a turbulent boundary layer. The actuation mechanisms of 38 spanwise travelling transversal surface waves are investigated. MAO compares and classifies these actuated flows in agreement with physical intuition. For instance, the first feature coordinate of the attractor proximity map correlates with drag for the fluidic pinball and for the turbulent boundary layer. MAO has a large spectrum of potential applications ranging from a quantitative comparison between numerical simulations and experimental particle-image velocimetry data to the analysis of simulations representing a myriad of different operating conditions.



Hide All

Present address: Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Email address for correspondence:



Hide All
Alkishriwi, N., Meinke, M. & Schröder, W. 2006 A large-eddy simulation method for low Mach number flows using preconditioning and multigrid. Comput. Fluids 35 (10), 11261136.
Arthur, D. & Vassilvitskii, S. 2007 k-means + +: the advantages of careful seeding. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 10271035. Society for Industrial and Applied Mathematics.
Bansal, M. S. & Yarusevych, S. 2017 Experimental study of flow through a cluster of three equally spaced cylinders. Exp. Therm. Fluid Sci. 80, 203217.
Barros, D., Borée, J., Noack, B. R., Spohn, A. & Ruiz, T. 2016 Bluff body drag manipulation using pulsed jets and Coanda effect. J. Fluid Mech. 805, 442459.
Bearman, P. W. 1967 The effect of base bleed on the flow behind a two-dimensional model with a blunt trailing edge. Aeronaut. Q. 18 (03), 207224.
Berkooz, G., Holmes, P. & Lumley, J. L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539575.
Boris, J. P., Grinstein, F. F., Oran, E. S. & Kolbe, R. L. 1992 New insights into large eddy simulation. Fluid Dyn. Res. 10 (4–6), 199228.
Brunton, S. L. & Noack, B. R. 2015 Closed-loop turbulence control: progress and challenges. Appl. Mech. Rev. 67 (5), 050801.
Burkardt, J., Gunzburger, M. & Lee, H. C. 2006 POD and CVT-based reduced-order modeling of Navier–Stokes flows. Comput. Meth. Appl. Mech. Engng 196, 337355.
Cox, T. F. & Cox, M. A. A. 2000 Multidimensional Scaling, 2nd edn. (Monographs on Statistics and Applied Probability) , vol. 88. Chapman and Hall.
Du, Y., Symeonidis, V. & Karniadakis, G. E. 2002 Drag reduction in wall-bounded turbulence via a transverse travelling wave. J. Fluid Mech. 457, 134.
Duriez, T., Brunton, S. L. & Noack, B. R. 2016 Machine Learning Control – Taming Nonlinear Dynamics and Turbulence, (Fluid Mechanics and Its Applications) , vol. 116. Springer.
Endres, D. M. & Schindelin, J. E. 2003 A new metric for probability distributions. IEEE Trans. Inf. Theory 49, 18581860.
García-Mayoral, R. & Jiménez, J. 2011 Hydrodynamic stability and breakdown of the viscous regime over riblets. J. Fluid Mech. 678, 317347.
Geropp, D.1995 Process and device for reducing the drag in the rear region of a vehicle, for example, a road or rail vehicle or the like. United States Patent US 5407245 A.
Geropp, D. & Odenthal, H.-J. 2000 Drag reduction of motor vehicles by active flow control using the Coanda effect. Exp. Fluids 28 (1), 7485.
Haller, G. 2005 An objective definition of a vortex. J. Fluid Mech. 525, 126.
Hirt, C. W., Amsden, A. A. & Cook, J. L. 1997 An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J. Comput. Phys. 135 (2), 203216.
Hu, J. & Zhou, Y. 2008a Flow structure behind two staggered circular cylinders. Part 1. Downstream evolution and classification. J. Fluid Mech. 607, 5180.
Hu, J. & Zhou, Y. 2008b Flow structure behind two staggered circular cylinders. Part 2. Heat and momentum transport. J. Fluid Mech. 607, 81107.
Itoh, M., Tamano, S., Yokota, K. & Taniguchi, S. 2006 Drag reduction in a turbulent boundary layer on a flexible sheet undergoing a spanwise traveling wave motion. J. Turbul. 7, N27.
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.
Jung, W. J., Mangiavacchi, N. & Akhavan, R. 1992 Suppression of turbulence in wallbounded flows by highfrequency spanwise oscillations. Phys. Fluids A 4 (8), 16051607.
Kaiser, E., Li, R. & Noack, B. R. 2017a On the control landscape topology. In The 20th World Congress of the International Federation of Automatic Control (IFAC), pp. 14.
Kaiser, E., Noack, B. R., Cordier, L., Spohn, A., Segond, M., Abel, M. W., Daviller, G., Östh, J., Krajnović, S. & Niven, R. K. 2014 Cluster-based reduced-order modelling of a mixing layer. J. Fluid Mech. 754, 365414.
Kaiser, E., Noack, B. R., Spohn, A., Cattafesta, L. N. & Morzyński, M. 2017b Cluster-based control of nonlinear dynamics. Theor. Comput. Fluid Dyn. 31 (5–6), 15791593.
Kasten, J., Reininghaus, J., Hotz, I., Hege, H.-C., Noack, B. R., Daviller, G., Comte, P. & Morzyński, M. 2016 Acceleration feature points of unsteady shear flows. Arch. Mech. 68, 5580.
Klumpp, S., Meinke, M. & Schröder, W. 2010a Numerical simulation of riblet controlled spatial transition in a zero-pressure-gradient boundary layer. Flow Turbul. Combust. 85 (1), 5771.
Klumpp, S., Meinke, M. & Schröder, W. 2010b Drag reduction by spanwise transversal surface waves. J. Turbul. 11, N22.
Klumpp, S., Meinke, M. & Schröder, W. 2011 Friction drag variation via spanwise transversal surface waves. Flow Turbul. Combust. 87 (1), 3353.
Koh, S. R., Meysonnat, P., Statnikov, V., Meinke, M. & Schröder, W. 2015a Dependence of turbulent wall-shear stress on the amplitude of spanwise transversal surface waves. Comput. Fluids 119, 261275.
Koh, S. R., Meysonnat, P., Meinke, M. & Schröder, W. 2015b Drag reduction via spanwise transversal surface waves at high Reynolds numbers. Flow Turbul. Combust. 95 (1), 169190.
Kullback, S. 1959 Information Theory and Statistics, 1st edn. John Wiley.
Kullback, S. & Leibler, R. A. 1951 On information and sufficiency. Ann. Math. Statist. 22, 7986.
Li, W., Jessen, W., Roggenkamp, D., Klaas, M., Silex, W., Schiek, M. & Schröder, W. 2015 Turbulent drag reduction by spanwise traveling ribbed surface waves. Eur. J. Mech. (B/Fluids) 53, 101112.
Liepmann, H. W. & Roshko, A. 2013 Elements of Gasdynamics. Dover.
Liou, M.-S. & Steffen, C. J. 1993 A new flux splitting scheme. J. Comput. Phys. 107, 2339.
Lloyd, S. 1982 Least squares quantization in PCM. IEEE Trans. Inf. Theory 28 (2), 129137.
Loiseau, J.-C., Noack, B. R. & Brunton, S. L. 2018 Sparse reduced-order modeling: sensor-based dynamics to full-state estimation. J. Fluid Mech. 844, 459490.
Lugt, H. J. 1996 Introduction to Vortex Theory. Vortex Flow Press.
MacQueen, J. 1967 Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Math. Stat. and Prob., vol. 1, pp. 281297.
Meinke, M., Schröder, W., Krause, E. & Rister, T. 2002a A comparison of second-and sixth-order methods for large-eddy simulations. Comput. Fluids 31 (4–7), 695718.
Meinke, M., Schröder, W., Krause, E. & Rister, T. 2002b A comparison of second-and sixth-order methods for large-eddy simulations. Comput. Fluids 31 (4), 695718.
Meysonnat, P. S., Roggenkamp, D., Li, W., Roidl, B. & Schröder, W. 2016 Experimental and numerical investigation of transversal traveling surface waves for drag reduction. Eur. J. Mech. (B/Fluids) 55, 313323.
Noack, B. R. 2016 From snapshots to modal expansions – bridging low residuals and pure frequencies. J. Fluid Mech. 802, 14.
Noack, B. R., Afanasiev, K., Morzyński, M., Tadmor, G. & Thiele, F. 2003 A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335363.
Noack, B. R. & Morzyński, M.2017 The fluidic pinball – a toolkit for multiple-input multiple-output flow control (version 1.0). Tech. Rep. 02/2017. Chair of Virtual Engineering, Poznan University of Technology, Poland.
Noack, B. R., Stankiewicz, W., Morzyński, M. & Schmid, P. J. 2016 Recursive dynamic mode decomposition of transient and post-transient wake flows. J. Fluid Mech. 809, 843872.
Oxlade, A. R., Morrison, J. F., Qubain, A. & Rigas, G. 2015 High-frequency forcing of a turbulent axisymmetric wake. J. Fluid Mech. 770, 305318.
Pastoor, M., Henning, L., Noack, B. R., King, R. & Tadmor, G. 2008 Feedback shear layer control for bluff body drag reduction. J. Fluid Mech. 608, 161196.
Quadrio, M. 2011 Drag reduction in turbulent boundary layers by in-plane wall motion. Phil. Trans. R. Soc. Lond. A 369 (1940), 14281442.
Raibaudo, C., Zhong, P., Martinuzzi, R. J. & Noack, B. R. 2017 Closed-loop control of a triangular bluff body using rotating cylinders. In The 20th World Congress of the International Federation of Automatic Control (IFAC), pp. 16.
Renze, P., Schröder, W. & Meinke, M. 2008 Large-eddy simulation of film cooling flows at density gradients. Intl J. Heat Fluid Flow 29 (1), 1834.
Roidl, B., Meinke, M. & Schröder, W. 2013 A reformulated synthetic turbulence generation method for a zonal RANS–LES method and its application to zero-pressure gradient boundary layers. Intl J. Heat Fluid Flow 44, 2840.
Rolland, R.2017 Fluidic pinball – a control study. MS2 Internship Report, LIMSI and ENSAM, Paris, France.
Roussopoulos, K. 1993 Feedback control of vortex shedding at low Reynolds numbers. J. Fluid Mech. 248, 267296.
Rowley, C. W., Mezić, I., Bagheri, S., Schlatter, P. & Henningson, D. S. 2009 Spectral analysis of nonlinear flows. J. Fluid Mech. 645, 115127.
Rütten, F., Schröder, W. & Meinke, M. 2005 Large-eddy simulation of low frequency oscillations of the Dean vortices in turbulent pipe bend flows. Phys. Fluids 17 (3), 035107.
Schmid, P. J. 2010 Dynamic mode decomposition for numerical and experimental data. J. Fluid Mech. 656, 528.
Schuster, H. G. 1988 Deterministic Chaos, 2nd edn. VCH Verlagsgesellschaft mbH.
Statnikov, V., Meinke, M. & Schröder, W. 2017 Reduced-order analysis of buffet flow of space launchers. J. Fluid Mech. 815, 125.
Steinhaus, H. 1956 Sur la division des corps matériels en parties. Bull. Acad. Polon. Sci. 4 (12), 801804.
Shinji, T. & Motoyuki, I. 2012 Drag reduction in turbulent boundary layers by spanwise traveling waves with wall deformation. J. Turbul. 13, N9.
Theofilis, V. 2011 Global linear instability. Annu. Rev. Fluid Mech. 43, 319352.
Thiria, B., Goujon-Durand, S. & Wesfreid, J. E. 2006 The wake of a cylinder performing rotary oscillations. J. Fluid Mech. 560, 123147.
Venturi, D. 2006 On proper orthogonal decomposition of randomly perturbed fields with applications to flow past a cylinder and natural convection over a horizontal plate. J. Fluid Mech. 559, 215254.
Wood, C. J. 1964 The effect of base bleed on a periodic wake. J. R. Aero. Soc. 68 (643), 477482.
Zhao, H., Wu, J.-Z. & Luo, J.-S. 2004 Turbulent drag reduction by traveling wave of flexible wall. Fluid Dyn. Res. 34 (3), 175198.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Metric for attractor overlap

  • Rishabh Ishar (a1), Eurika Kaiser (a2), Marek Morzyński (a3), Daniel Fernex (a4), Richard Semaan (a4), Marian Albers (a5), Pascal S. Meysonnat (a5), Wolfgang Schröder (a5) (a6) and Bernd R. Noack (a4) (a7) (a8) (a9)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.