Skip to main content Accessibility help
×
Home

Micro-structure and Lagrangian statistics of the scalar field with a mean gradient in isotropic turbulence

  • G. BRETHOUWER (a1) (a2), J. C. R. HUNT (a1) (a3) and F. T. M. NIEUWSTADT (a1)

Abstract

This paper presents an analysis and numerical study of the relations between the small-scale velocity and scalar fields in fully developed isotropic turbulence with random forcing of the large scales and with an imposed constant mean scalar gradient. Simulations have been performed for a range of Reynolds numbers from Reλ = 22 to 130 and Schmidt numbers from Sc = 1/25 to 144.

The simulations show that for all values of Sc [ges ] 0.1 steep scalar gradients are concentrated in intermittently distributed sheet-like structures with a thickness approximately equal to the Batchelor length scale η/Sc½ with η the Kolmogorov length scale. We observe that these sheets or cliffs are preferentially aligned perpendicular to the direction of the mean scalar gradient. Due to this preferential orientation of the cliffs the small-scale scalar field is anisotropic and this is an example of direct coupling between the large- and small-scale fluctuations in a turbulent field. The numerical simulations also show that the steep cliffs are formed by straining motions that compress the scalar field along the imposed mean scalar gradient in a very short time period, proportional to the Kolmogorov time scale. This is valid for the whole range of Sc. The generation of these concentration gradients is amplified by rotation of the scalar gradient in the direction of compressive strain. The combination of high strain rate and the alignment results in a large increase of the scalar gradient and therefore in a large scalar dissipation rate.

These results of our numerical study are discussed in the context of experimental results (Warhaft 2000) and kinematic simulations (Holzer & Siggia 1994). The theoretical arguments developed here follow from earlier work of Batchelor & Townsend (1956), Betchov (1956) and Dresselhaus & Tabor (1991).

Copyright

MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Micro-structure and Lagrangian statistics of the scalar field with a mean gradient in isotropic turbulence

  • G. BRETHOUWER (a1) (a2), J. C. R. HUNT (a1) (a3) and F. T. M. NIEUWSTADT (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed