Skip to main content Accessibility help

Minimal models for precipitating turbulent convection

  • Gerardo Hernandez-Duenas (a1), Andrew J. Majda (a2), Leslie M. Smith (a1) (a3) and Samuel N. Stechmann (a1) (a4)

Simulations of precipitating convection would typically use a non-Boussinesq dynamical core such as the anelastic equations, and would incorporate water substance in all of its phases: vapour, liquid and ice. Furthermore, the liquid water phase would be separated into cloud water (small droplets suspended in air) and rain water (larger droplets that fall). Depending on environmental conditions, the moist convection may organize itself on multiple length and time scales. Here we investigate the question, what is the minimal representation of water substance and dynamics that still reproduces the basic regimes of turbulent convective organization? The simplified models investigated here use a Boussinesq atmosphere with bulk cloud physics involving equations for water vapour and rain water only. As a first test of the minimal models, we investigate organization or lack thereof on relatively small length scales of approximately 100 km and time scales of a few days. It is demonstrated that the minimal models produce either unorganized (‘scattered’) or organized convection in appropriate environmental conditions, depending on the environmental wind shear. For the case of organized convection, the models qualitatively capture features of propagating squall lines that are observed in nature and in more comprehensive cloud resolving models, such as tilted rain water profiles, low-altitude cold pools and propagation speed corresponding to the maximum of the horizontally averaged, horizontal velocity.

Corresponding author
Email address for correspondence:
Hide All
Asai, T. 1970 Stability of a plane parallel flow with variable vertical shear and unstable stratification. J. Met. Soc. Japan 48, 129139.
Bannon, P. R. 1996 On the anelastic approximation for a compressible atmosphere. J. Atmos. Sci. 53, 36183628.
Barnes, G. M. & Sieckman, K. 1984 The environment of fast-and slow-moving tropical mesoscale convective cloud lines. Mon. Weath. Rev. 112 (9), 17821794.
Bretherton, C. S. 1987 A theory for nonprecipitating moist convection between two parallel plates. Part I: thermodynamics and ‘linear’ solutions. J. Atmos. Sci. 44, 18091827.
Castaing, B., Gunaratne, G., Kadanoff, L., Libchaber, A. & Heslot, F. 1989 Scaling of hard thermal turbulence in Rayleigh–Bénard convection. J. Fluid Mech. 204 (1), 130.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.
Cuijpers, J. W. M. & Duynkerke, P. G. 1993 Large eddy simulation of trade wind cumulus clouds. J. Atmos. Sci. 50 (23), 38943908.
Deardorff, J. W. 1965 Gravitational instability between horizontal plates with shear. Phys. Fluids 8, 1027.
Deng, Q., Smith, L. M. & Majda, A. J. 2012 Tropical cyclogenesis and vertical shear in a moist Boussinesq model. J. Fluid Mech. 706, 384412.
Emanuel, K. 1986 Some dynamical aspect of precipitating convection. J. Atmos. Sci. 43, 21832198.
Emanuel, K. A. 1994 Atmospheric Convection. Oxford University Press.
Fovell, R. & Ogura, Y. 1988 Numerical simulation of a midlatitude squall line in two dimensions. J. Atmos. Sci. 45 (24), 38463879.
Grabowski, W. W. & Clark, T. L. 1993 Cloud–environment interface instability, part II: extension to three spatial dimensions. J. Atmos. Sci. 50, 555573.
Grabowski, W. W. & Moncrieff, M. W. 2001 Large-scale organization of tropical convection in two-dimensional explicit numerical simulations. Q. J. R. Meteorol. Soc. 127, 445468.
Grabowski, W. W. & Smolarkiewicz, P. K. 1996 Two-time-level semi-Lagrangian modeling of precipitating clouds. Mon. Weath. Rev. 124 (3), 487497.
Grabowski, W. W., Wu, X. & Moncrieff, M. W. 1996 Cloud-resolving modeling of tropical cloud systems during Phase III of GATE. Part I: two-dimensional experiments. J. Atmos. Sci. 53, 36843709.
Grabowski, W. W., Wu, X., Moncrieff, M. W. & Hall, W. D. 1998 Cloud-resolving modeling of cloud systems during Phase III of GATE. Part II: effects of resolution and the third spatial dimension. J. Atmos. Sci. 55 (21), 32643282.
Hendon, H. H. & Liebmann, B. 1994 Organization of convection within the Madden–Julian oscillation. J. Geophys. Res. 99, 80738084.
Houze, R. A. 1993 Cloud Dynamics. Academic.
Houze, R. A. Jr. 2004 Mesoscale convective systems. Rev. Geophys. 42, G4003+.
Jorgensen, D. P., LeMone, M. A. & Trier, S. B. 1997 Structure and evolution of the 22 February 1993 TOGA COARE squall line: aircraft observations of precipitation, circulation, and surface energy fluxes. J. Atmos. Sci. 54 (15), 19611985.
Jung, J.-H. & Arakawa, A. 2005 Preliminary tests of multiscale modeling with a two-dimensional framework: sensitivity to coupling methods. Mon. Weath. Rev. 133 (3), 649662.
Kessler, E. 1969 On the Distribution and Continuity of Water Substance in Atmospheric Circulations, Meteorological Monographs , vol. 32. American Meteorological Society.
Khouider, B., Han, Y., Majda, A. J. & Stechmann, S. N. 2012 Multiscale waves in an MJO background and convective momentum transport feedback. J. Atmos. Sci. 69, 915933.
Kiladis, G. N., Wheeler, M. C., Haertel, P. T., Straub, K. H. & Roundy, P. E. 2009 Convectively coupled equatorial waves. Rev. Geophys. 47, RG2003.
Kim, D., Sperber, K., Stern, W., Waliser, D., Kang, I.-S., Maloney, E., Wang, W., Weickmann, K., Benedict, J., Khairoutdinov, M., Lee, M.-I., Neale, R., Suarez, M., Thayer-Calder, K. & Zhang, G. 2009 Application of MJO simulation diagnostics to climate models. J. Climate 22 (23), 64136436.
Klein, R. & Majda, A. 2006 Systematic multiscale models for deep convection on mesoscales. Theor. Comput. Fluid Dyn. 20, 525551.
Krishnamurti, R. 1970a On the transition to turbulent convection. Part 1. The transition from two-to three-dimensional flow. J. Fluid Mech. 42 (2), 295307.
Krishnamurti, R. 1970b On the transition to turbulent convection. Part 2. The transition to time-dependent flow. J. Fluid Mech. 42 (2), 309320.
Kuo, H. L. 1961 Convection in conditionally unstable atmosphere. Tellus 13 (4), 441459.
Lafore, J. P. & Moncrieff, M. W. 1989 A numerical investigation of the organization and interaction of the convective and stratiform regions of tropical squall lines. J. Atmos. Sci. 46 (4), 521544.
Lau, W. K. M. & Waliser, D. E. (Eds) 2011 Intraseasonal Variability in the Atmosphere–Ocean Climate System. Springer.
LeMone, M. A., Zipser, E. J. & Trier, S. B. 1998 The role of environmental shear and thermodynamic conditions in determining the structure and evolution of mesoscale convective systems during TOGA COARE. J. Atmos. Sci. 55 (23), 34933518.
Lilly, D. K. 1979 The dynamical structure and evolution of thunderstorms and squall lines. Annu. Rev. Earth Planet. Sci. 7, 117161.
Lipps, F. B. & Hemler, R. S. 1982 A scale analysis of deep moist convection and some related numerical calculations. J. Atmos. Sci. 39, 21922210.
Liu, C. & Moncrieff, M. W. 2001 Cumulus ensembles in shear: implications for parameterization. J. Atmos. Sci. 58 (18), 28322842.
Lucas, C., Zipser, E. J. & Ferrier, B. S. 2000 Sensitivity of tropical west pacific oceanic squall lines to tropospheric wind and moisture profiles. J. Atmos. Sci. 57 (15), 23512373.
Majda, A. & Souganidis, P. 2000 The effect of turbulence on mixing in prototype reaction–diffusion systems. Commun. Pure Appl. Maths 53 (10), 12841304.
Majda, A. J. & Stechmann, S. N. 2008 Stochastic models for convective momentum transport. Proc. Natl Acad. Sci. U.S.A. 105, 1761417619.
Majda, A. J. & Stechmann, S. N. 2009 A simple dynamical model with features of convective momentum transport. J. Atmos. Sci. 66, 373392.
Majda, A. J. & Stechmann, S. N. 2011 Multiscale theories for the MJO. In Intraseasonal Variability in the Atmosphere–Ocean Climate System (ed. Lau, W. K. M. & Waliser, D. E.). Springer.
Majda, A. J. & Xing, Y. 2010 New multi-scale models on mesoscales and squall lines. Commun. Math. Sci. 8 (1), 113144.
Majda, A. J., Xing, Y. & Mohammadian, M. 2010 Moist multi-scale models for the hurricane embryo. J. Fluid Mech. 657, 478501.
Mapes, B. E., Tulich, S., Lin, J.-L. & Zuidema, P. 2006 The mesoscale convection life cycle: building block or prototype for large-scale tropical waves?. Dyn. Atmos. Oceans 42, 329.
Moncrieff, M. W. 1981 A theory of organized steady convection and its transport properties. Q. J. R. Meteorol. Soc. 107 (451), 2950.
Moncrieff, M. W. 1992 Organized convective systems: archetypal dynamical models, mass and momentum flux theory, and parameterization. Q. J. R. Meteorol. Soc. 118 (507), 819850.
Moncrieff, M. W. 2010 The multiscale organization of moist convection and the intersection of weather and climate. In Climate Dynamics: Why Does Climate Vary? (ed. Sun, D.-Z. & Bryan, F.). Geophysical Monograph Series , vol. 189. pp. 326. American Geophysical Union.
Moncrieff, M. W. & Green, J. S. A. 1972 The propagation and transfer properties of steady convective overturning in shear. Q. J. R. Meteorol. Soc. 98 (416), 336352.
Moncrieff, M. W. & Miller, M. J. 1976 The dynamics and simulation of tropical cumulonimbus and squall lines. Q. J. R. Meteorol. Soc. 102, 373394.
Moncrieff, M. W., Shapiro, M., Slingo, J. & Molteni, F. 2007 Collaborative research at the intersection of weather and climate. WMO Bull. 56, 204211.
Morrison, H. & Grabowski, W. W. 2008 Modeling supersaturation and subgrid-scale mixing with two-moment bulk warm microphysics. J. Atmos. Sci. 65 (3), 792812.
Nakazawa, T. 1988 Tropical super clusters within intraseasonal variations over the Western Pacific. J. Met. Soc. Japan 66 (6), 823839.
Ogura, Y. & Phillips, N. A. 1962 Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci. 19, 173179.
Pauluis, O. 2008 Thermodynamic consistency of the anelastic approximation for a moist atmosphere. J. Atmos. Sci. 65 (8), 27192729.
Pauluis, O., Balaji, V. & Held, I. M. 2000 Frictional dissipation in a precipitating atmosphere. J. Atmos. Sci. 57 (7), 989994.
Pauluis, O. & Dias, J. 2012 Satellite estimates of precipitation-induced dissipation in the atmosphere. Science 335 (6071), 953956.
Pauluis, O. & Schumacher, J. 2010 Idealized moist Rayleigh–Bénard convection with piecewise linear equation of state. Commun. Math. Sci. 8, 295319.
Pauluis, O. & Schumacher, J. 2011 Self-aggregation of clouds in conditionally unstable moist convection. Proc. Natl Acad. Sci. U.S.A. 108, 1262312628.
Peters, N. 2000 Turbulent Combustion. Cambridge University Press.
Pruppacher, H. R. & Klett, J. D. 1997 Microphysics of Clouds and Precipitation. Kluwer Academic.
Rogers, R. R. & Yau, M. K. 1989 A Short Course in Cloud Physics. Butterworth–Heinemann.
Schumacher, J. & Pauluis, O. 2010 Buoyancy statistics in moist turbulent Rayleigh–Bénard convection. J. Fluid Mech. 648, 509519.
Seitter, K. L. & Kuo, H.-L. 1983 The dynamical structure of squall-line type thunderstorms. J. Atmos. Sci. 40, 28312854.
Spiegel, E. A. & Veronis, G. 1960 On the Boussinesq approximation for a compressible fluid. Astrophys. J. 131, 442447.
Spyksma, K. & Bartello, P. 2008 Small-scale moist turbulence in numerically generated convective clouds. J. Atmos. Sci. 65, 19671978.
Spyksma, K., Bartello, P. & Yau, M. K. 2006 A Boussinesq moist turbulence model. J. Turbul. 7, 124.
Stevens, B. 2005 Atmospheric moist convection. Annu. Rev. Earth Planet. Sci. 33 (1), 605643.
Stevens, B. 2007 On the growth of layers of nonprecipitating cumulus convection. J. Atmos. Sci. 64, 29162931.
Straub, K. H., Haertel, P. T. & Kiladis, G. N. 2010 An analysis of convectively coupled Kelvin waves in 20 WCRP CMIP3 global coupled climate models. J. Climate 23 (11), 30313056.
Sukhatme, J., Majda, A. J. & Smith, L. M. 2012 Two-dimensional moist stratified turbulence and the emergence of vertically sheared horizontal flows. Phys. Fluids 24, 036602.
Vallis, G. K. 2006 Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-scale Circulation. Cambridge University Press.
Wu, X., Grabowski, W. W. & Moncrieff, M. W. 1998 Long-term behavior of cloud systems in TOGA COARE and their interactions with radiative and surface processes. Part I: two-dimensional modeling study. J. Atmos. Sci. 55 (17), 26932714.
Wu, X. & Moncrieff, M. W. 1996 Collective effects of organized convection and their approximation in general circulation models. J. Atmos. Sci. 53 (10), 14771495.
Xu, K. M. & Randall, D. A. 1996 Explicit simulation of cumulus ensembles with the GATE Phase III data: comparison with observations. J. Atmos. Sci. 53, 37103736.
Zhang, C. 2005 Madden–Julian oscillation. Rev. Geophys. 43, G2003+.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed