Skip to main content
×
Home
    • Aa
    • Aa

Miscible displacement in a Hele-Shaw cell at high rates

  • E. LAJEUNESSE (a1), J. MARTIN (a1), N. RAKOTOMALALA (a1), D. SALIN (a1) and Y. C. YORTSOS (a2)...
Abstract

We study experimentally and theoretically the downward vertical displacement of one miscible fluid by another lighter one in the gap of a Hele-Shaw cell at sufficiently high velocities for diffusive effects to be negligible. Under certain conditions on the viscosity ratio, M, and the normalized flow rate, U, this results in the formation of a two-dimensional tongue of the injected fluid, which is symmetric with respect to the midplane. Thresholds in flow rate and viscosity ratio exist above which the two- dimensional flow destabilizes, giving rise to a three-dimensional pattern. We describe in detail the two-dimensional regime using a kinematic wave theory similar to Yang & Yortsos (1997) and we delineate in the (M, U)-plane three different domains, characterized respectively by the absence of a shock, the presence of an internal shock and the presence of a frontal shock. Theoretical and experimental results are compared and found to be in good agreement for the first two domains, but not for the third domain, where the frontal shock is not of the contact type. An analogous treatment is also applied to the case of axisymmetric displacement in a cylindrical tube.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 65 *
Loading metrics...

Abstract views

Total abstract views: 131 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th September 2017. This data will be updated every 24 hours.