Skip to main content Accessibility help
×
×
Home

Mixed convection in a horizontal duct with bottom heating and strong transverse magnetic field

  • Xuan Zhang (a1) and Oleg Zikanov (a1)

Abstract

Mixed convection in a horizontal duct with imposed transverse horizontal magnetic field is studied using direct numerical simulations (DNS) and linear stability analysis. The duct’s walls are electrically insulated and thermally insulated with the exception of the bottom wall, at which constant-rate heating is applied. The focus of the study is on flows at high Hartmann ( $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathit{Ha}\le 800$ ) and Grashof ( $\mathit{Gr}\le 10^9$ ) numbers. It is found that, while conventional turbulence is fully suppressed, the natural convection mechanism leads to the development of large-scale coherent structures. Two types of flows are found. One is the ‘low- $\mathit{Gr}$ ’ regime, in which the structures are rolls aligned with the magnetic field and velocity and temperature fields are nearly uniform along the magnetic field lines outside of the boundary layers. Another is the ‘high- $\mathit{Gr}$ ’ regime, in which the convection appears as a combination of similar rolls oriented along the magnetic field lines and streamwise-oriented rolls. In this case, velocity and temperature distributions are anisotropic, but three-dimensional.

Copyright

Corresponding author

Email address for correspondence: zikanov@umich.edu

References

Hide All
Alboussière, T., Garandet, J. P. & Moreau, R. 1993 Buoyancy-driven convection with a uniform magnetic field. Part 1. Asymptotic analysis. J. Fluid Mech. 253, 545563.
Authié, G., Tagawa, T. & Moreau, R. 2003 Buoyant flow in long vertical enclosures in the presence of a strong horizontal magnetic field. Part 2. Finite enclosures. Eur. J. Mech. (B/Fluids) 22 (3), 203220.
Branover, H. 1978 Magnetohydrodynamic Flow in Ducts. Wiley.
Davidson, P. A. 2001 An Introduction to Magnetohydrodynamics. Cambridge University Press.
Genin, L. G., Zhilin, V. G., Ivochkin, Y. P., Razuvanov, N. G., Belyaev, I. A., Listratov, Y. I. & Sviridov, V. G.2011 Temperature fluctuations in a heated horizontal tube affected by transverse magnetic field. In Proceedings of the 8th International Pamir Conference on Fundamental and Applied MHD, Borgo, Corsica, pp. 37–41.
Krasnov, D., Zikanov, O. & Boeck, T. 2011 Comparative study of finite difference approaches to simulation of magnetohydrodynamic turbulence at low magnetic Reynolds number. Comput. Fluids 50, 4659.
Krasnov, D. S., Zikanov, O. & Boeck, T. 2012 Numerical study of magnetohydrodynamic duct flow at high Reynolds and Hartmann numbers. J. Fluid Mech. 704, 421446.
Lee, D. & Choi, H. 2001 Magnetohydrodynamic turbulent flow in a channel at low magnetic Reynolds number. J. Fluid Mech. 429, 367394.
Lyubimova, T. P., Lyubimov, D. V., Morozov, V. A., Scuridin, R. V., Hadid, H. B. & Henry, D. 2009 Stability of convection in a horizontal channel subjected to a longitudinal temperature gradient. Part 1. Effect of aspect ratio and Prandtl number. J. Fluid Mech. 635, 275296.
Mas de les Valls, E., Batet, L., de Medina, V., Fradera, J. & Sedano, L. 2011 Qualification of MHD effects in dual-coolant DEMO blanket and approaches to their modelling. Fusion Engng Des. 86 (9–11), 23262329.
Mas de les Valls, E., Sedano, L., Batet, L., Ricapito, I., Aiello, A., Gastaldi, O. & Gabriel, F. 2008 Lead–lithium eutectic material database for nuclear fusion technology. J. Nucl. Mater. 376 (3), 353357.
Mistrangelo, C. & Bühler, L. 2013 Magneto-convective flows in electrically and thermally coupled channels. Fusion Engng Des. 88 (9–10), 23232327.
Molokov, S., Moreau, R. & Moffatt, H. K. 2007 Magnetohydrodynamics: Historical Evolution and Trends. Springer.
Morinishi, Y., Lund, T. S., Vasilyev, O. V. & Moin, P. 1998 Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys. 143, 90124.
Ni, M.-J., Munipalli, R., Huang, P., Morley, N. B. & Abdou, M. A. 2007 A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part I: On a rectangular collocated grid system. J. Comput. Phys. 227, 174204.
Smolentsev, S., Moreau, R. & Abdou, M. 2008 Characterization of key magnetohydrodynamic phenomena for PbLi flows for the US DCLL blanket. Fusion Engng Des. 83, 771783.
Smolentsev, S., Moreau, R., Bühler, L. & Mistrangelo, C. 2010 MHD thermofluid issues of liquid–metal blankets: phenomena and advances. Fusion Engng Des. 85 (7–9), 11961205.
Smolentsev, S., Morley, M. & Abdou, M. 2006 MHD and thermal issues of the SiCf/SiC flowchannel insert. Fusion Sci. Technol. 50, 107119.
Sommeria, J. & Moreau, R. 1982 Why, how and when MHD-turbulence becomes two-dimensional. J. Fluid Mech. 118, 507518.
Tagawa, T., Authié, G. & Moreau, R. 2002 Buoyant flow in long vertical enclosures in the presence of a strong horizontal magnetic field. Part 1. Fully-established flow. Eur. J. Mech. (B/Fluids) 21 (3), 383398.
Vetcha, N., Smolentsev, S., Abdou, M. & Moreau, R. 2013 Study of instabilities and quasi-two-dimensional turbulence in volumetrically heated magnetohydrodynamic flows in a vertical rectangular duct. Phys. Fluids 25 (2), 024102.
Zhao, Y. & Zikanov, O. 2012 Instabilities and turbulence in magnetohydrodynamic flow in a toroidal duct prior to transition in Hartmann layers. J. Fluid Mech. 692, 288316.
Zikanov, O. 2010 Essential Computational Fluid Dynamics. Wiley.
Zikanov, O., Listratov, Y. & Sviridov, V. G. 2013 Natural convection in horizontal pipe flow with strong transverse magnetic field. J. Fluid Mech. 720, 486516.
Zikanov, O. & Thess, A. 1998 Direct numerical simulation of forced MHD turbulence at low magnetic Reynolds number. J. Fluid Mech. 358, 299333.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed