Skip to main content
×
×
Home

Mixing across fluid interfaces compressed by convective flow in porous media

  • Juan J. Hidalgo (a1) (a2) and Marco Dentz (a1) (a2)
Abstract

We study mixing in the presence of convective flow in a porous medium. Convection is characterized by the formation of vortices and stagnation points, where the fluid interface is stretched and compressed enhancing mixing. We analyse the behaviour of the mixing dynamics in different scenarios using an interface deformation model. We show that the scalar dissipation rate, which is related to the dissolution fluxes, is controlled by interfacial processes, specifically the equilibrium between interface compression and diffusion, which depends on the flow field configuration. We consider different scenarios of increasing complexity. First, we analyse a double-gyre synthetic velocity field. Second, a Rayleigh–Bénard instability (the Horton–Rogers–Lapwood problem), in which stagnation points are located at a fixed interface. This system experiences a transition from a diffusion controlled mixing to a chaotic convection as the Rayleigh number increases. Finally, a Rayleigh–Taylor instability with a moving interface, in which mixing undergoes three different regimes: diffusive, convection dominated and convection shutdown. The interface compression model correctly predicts the behaviour of the systems. It shows how the dependency of the compression rate on diffusion explains the change in the scaling behaviour of the scalar dissipation rate. The model indicates that the interaction between stagnation points and the correlation structure of the velocity field is also responsible for the transition between regimes. We also show the difference in behaviour between the dissolution fluxes and the mixing state of the systems. We observe that while the dissolution flux decreases with the Rayleigh number, the system becomes more homogeneous. That is, mixing is enhanced by reducing diffusion. This observation is explained by the effect of the instability patterns.

Copyright
Corresponding author
Email address for correspondence: juanj.hidalgo@idaea.csic.es
References
Hide All
Abarca, E., Carrera, J., Sánchez-Vila, X. & Voss, C. I. 2007 Quasi-horizontal circulation cells in 3d seawater intrusion. J. Hydrol. 339 (3–4), 118129.
Backhaus, S., Turitsyn, K. & Ecke, R. E. 2011 Convective instability and mass transport of diffusion layers in a Hele-Shaw geometry. Phys. Rev. Lett. 106 (10), 104501.
Batchelor, G. K. 1959 Small-scale variation of convected quantities like temperature in turbulent fluid part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5, 113133.
Cheng, P. 1979 Heat transfer in geothermal systems. Adv. Heat Transfer 14, 1105.
Ching, E. S. C. & Lo, K. F. 2001 Heat transport by fluid flows with prescribed velocity fields. Phys. Rev. E 64 (4), 046302.
Cooper, H. H. 1964 Sea Water in Coastal Aquifers, USGS Numbered Series 1613. USGS.
De Simoni, M., Carrera, J., Sánchez-Vila, X. & Guadagnini, A. 2005 A procedure for the solution of multicomponent reactive transport problems. Water Resour. Res. 41 (11), W11410.
Dentz, M., Le Borgne, T., Englert, A. & Bijeljic, B. 2011 Mixing, spreading and reaction in heterogeenous media: a brief review. J. Contam. Hydrol. 120–121, 117.
Dyga, R. & Troniewski, L. 2015 Convective heat transfer for fluids passing through aluminum foams. Arch. Thermodyn. 36 (1), 139156.
Elder, J. W. 1968 The unstable thermal interface. J. Fluid Mech. 32 (01), 6996.
Ennis-King, J. P. & Paterson, L. 2005 Role of convective mixing in the long-term storage of carbon dioxide in deep saline formations. SPE J. 10 (03), 349356.
Graham, M. D. & Steen, P. H. 1994 Plume formation and resonant bifurcations in porous-media convection. J. Fluid Mech. 272, 6790.
Hamadouche, A., Nebbali, R., Benahmed, H., Kouidri, A. & Bousri, A. 2016 Experimental investigation of convective heat transfer in an open-cell aluminum foams. Exp. Therm. Fluid Sci. 71, 8694.
Hewitt, D. R., Neufeld, J. A. & Lister, J. R. 2012 Ultimate regime of high Rayleigh number convection in a porous medium. Phys. Rev. Lett. 108 (22), 224503.
Hewitt, D. R., Neufeld, J. A. & Lister, J. R. 2013a Convective shutdown in a porous medium at high Rayleigh number. J. Fluid Mech. 719, 551586.
Hewitt, D. R., Neufeld, J. A. & Lister, J. R. 2013b Stability of columnar convection in a porous medium. J. Fluid Mech. 737, 205231.
Hidalgo, J. J. & Carrera, J. 2009 Effect of dispersion on the onset of convection during co2 sequestration. J. Fluid Mech. 640, 441452.
Hidalgo, J. J., Dentz, M., Cabeza, Y. & Carrera, J. 2015 Dissolution patterns and mixing dynamics in unstable reactive flow. Geophys. Res. Lett. 42 (15), 63576364.
Hidalgo, J. J., Fe, J., Cueto-Felgueroso, L. & Juanes, R. 2012 Scaling of convective mixing in porous media. Phys. Rev. Lett. 109 (26), 264503.
Hidalgo, J. J., MacMinn, C. W. & Juanes, R. 2013 Dynamics of convective dissolution from a migrating current of carbon dioxide. Adv. Water Resour. 62, 511519.
Horton, C. W. & Rogers, F. T. 1945 Convection currents in a porous medium. J. Appl. Phys. 16 (6), 367370.
Howard, L. N. 1966 Convection at High Rayleigh Number, pp. 11091115. Springer.
Kimura, S., Schubert, G. & Straus, J. M. 1986 Route to chaos in porous-medium thermal convection. J. Fluid Mech. 166 (-1), 305324.
Kitanidis, P. K. 1994 The concept of the dilution index. Water Resour. Res. 30 (7), 20112026.
Kueper, B. H. & Frind, E. O. 1991 Two-phase flow in heterogeneous porous media: 1. Model development. Water Resour. Res. 27 (6), 10491057.
Lapwood, E. R. 1948 Convection of a fluid in a porous medium. Math. Proc. Camb. Phil. Soc. 44 (04), 508521.
Le Borgne, T., Dentz, M., Bolster, D., Carrera, J., de Dreuzy, J.-R. & Davy, P. 2010 Non-fickian mixing: temporal evolution of the scalar dissipation rate in heterogeneous porous media. Adv. Water Resour. 33 (12), 14681475.
Le Borgne, T., Dentz, M. & Villermaux, E. 2013 Stretching, coalescence, and mixing in porous media. Phys. Rev. Lett. 110 (20), 204501.
Le Borgne, T., Dentz, M. & Villermaux, E. 2015 The lamellar description of mixing in porous media. J. Fluid Mech. 770, 458498.
Martin, D., Griffiths, R. W. & Campbell, I. H. 1987 Compositional and thermal convection in magma chambers. Contrib. Mineral. Petrol. 96 (4), 465475.
Musgrave, D. L. 1985 A numerical study of the roles of subgyre-scale mixing and the western boundary current on homogenization of a passive tracer. J. Geophys. Res. 90 (C4), 70377043.
Neufeld, J. A., Hesse, M. A., Riaz, A., Hallworth, M. A., Tchelepi, H. A. & Huppert, H. E. 2010 Convective dissolution of carbon dioxide in saline aquifers. Geophys. Res. Lett. 37 (22), L22404.
Otero, J., Dontcheva, L. A., Johnston, H., Worthing, R. A., Kurganov, A., Petrova, G. & Doering, C. R. 2004 High-Rayleigh-number convection in a fluid-saturated porous layer. J. Fluid Mech. 500, 263281.
Ottino, J. M. 1989 The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge Texts in Applied Mathematics. Cambridge University Press.
Ranz, W. E. 1979 Applications of a stretch model to mixing, diffusion, and reaction in laminar and turbulent flows. AIChE J. 25 (1), 4147.
Rees, D. A. S., Selim, A. & Ennis-King, J. P. 2008 The instability of unsteady boundary layers in porous media. In Emerging Topics in Heat and Mass Transfer in Porous Media. From Bioengineering and Microelectronics to Nanotechnology (ed. Vadasz, P.), Theory and Applications of Transport in Porous Media, vol. 22, pp. 85110. Springer.
Riaz, A., Hesse, M., Tchelepi, H. A. & Orr, F. M. Jr. 2006 Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. J. Fluid Mech. 548, 87111.
Sanford, W. E., Whitaker, F. F., Smart, P. L. & Jones, G. 1998 Numerical analysis of seawater circulation in carbonate platforms: I, geothermal convection. Am. J. Sci. 298 (10), 801828.
Shadden, S. C., Lekien, F. & Marsden, J. E. 2005 Definition and properties of lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D 212 (3–4), 271304.
Slim, A. C. 2014 Solutal-convection regimes in a two-dimensional porous medium. J. Fluid Mech. 741, 461491.
Slim, A. C. & Ramakrishnan, T. S. 2010 Onset and cessation of time-dependent, dissolution-driven convection in porous media. Phys. Fluids 22 (12), 124103.
Szulczewski, M. L., Hesse, M. A. & Juanes, R. 2013 Carbon dioxide dissolution in structural and stratigraphic traps. J. Fluid Mech. 736, 287315.
Tait, S. & Jaupart, C. 1989 Compositional convection in viscous melts. Nature 338 (6216), 571574.
Villermaux, E. 2012 Mixing by porous media. C. R. Méc 340 (11–12), 933943.
Villermaux, E. & Duplat, J. 2006 Coarse grained scale of turbulent mixtures. Phys. Rev. Lett. 97, 144506.
Wells, A. J., Wettlaufer, J. S. & Orszag, S. A. 2011 Brine fluxes from growing sea ice. Geophys. Res. Lett. 38 (4), l04501.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 8
Total number of PDF views: 177 *
Loading metrics...

Abstract views

Total abstract views: 350 *
Loading metrics...

* Views captured on Cambridge Core between 10th January 2018 - 23rd June 2018. This data will be updated every 24 hours.