Skip to main content
    • Aa
    • Aa

Model-based scaling of the streamwise energy density in high-Reynolds-number turbulent channels

  • Rashad Moarref (a1), Ati S. Sharma (a2), Joel A. Tropp (a3) and Beverley J. McKeon (a1)

We study the Reynolds-number scaling and the geometric self-similarity of a gain-based, low-rank approximation to turbulent channel flows, determined by the resolvent formulation of McKeon & Sharma (J. Fluid Mech., vol. 658, 2010, pp. 336–382), in order to obtain a description of the streamwise turbulence intensity from direct consideration of the Navier–Stokes equations. Under this formulation, the velocity field is decomposed into propagating waves (with single streamwise and spanwise wavelengths and wave speed) whose wall-normal shapes are determined from the principal singular function of the corresponding resolvent operator. Using the accepted scalings of the mean velocity in wall-bounded turbulent flows, we establish that the resolvent operator admits three classes of wave parameters that induce universal behaviour with Reynolds number in the low-rank model, and which are consistent with scalings proposed throughout the wall turbulence literature. In addition, it is shown that a necessary condition for geometrically self-similar resolvent modes is the presence of a logarithmic turbulent mean velocity. Under the practical assumption that the mean velocity consists of a logarithmic region, we identify the scalings that constitute hierarchies of self-similar modes that are parameterized by the critical wall-normal location where the speed of the mode equals the local turbulent mean velocity. For the rank-1 model subject to broadband forcing, the integrated streamwise energy density takes a universal form which is consistent with the dominant near-wall turbulent motions. When the shape of the forcing is optimized to enforce matching with results from direct numerical simulations at low turbulent Reynolds numbers, further similarity appears. Representation of these weight functions using similarity laws enables prediction of the Reynolds number and wall-normal variations of the streamwise energy intensity at high Reynolds numbers ( ${Re}_{\tau } \approx 1{0}^{3} {\unicode{x2013}} 1{0}^{10} $ ). Results from this low-rank model of the Navier–Stokes equations compare favourably with experimental results in the literature.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

R. J. Adrian 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19, 041301.

R. J. Adrian , C. D. Meinhart & C. D. Tomkins 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.

J. C. del Álamo & J. Jiménez 2006 Linear energy amplification in turbulent channels. J. Fluid Mech. 559, 205213.

J. C. del Álamo & J. Jiménez 2009 Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J. Fluid Mech. 640, 526.

J. C. del Álamo , J. Jiménez , P. Zandonade & R. D. Moser 2004 Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135144.

J. C. del Álamo , J. Jiménez , P. Zandonade & R. D. Moser 2006 Self-similar vortex clusters in the turbulent logarithmic region. J. Fluid Mech. 561, 329358.

P. H. Alfredsson , R. Örlü & A. Segalini 2012 A new formulation for the streamwise turbulence intensity distribution in wall-bounded turbulent flows. Eur. J. Mech. (B/Fluids) 36, 167175.

S. C. C. Bailey , M. Hultmark , A. J. Smits & M. P. Schultz 2008 Azimuthal structure of turbulence in high Reynolds number pipe flow. J. Fluid Mech. 615, 121138.

B. J. Balakumar & R. J. Adrian 2007 Large- and very-large-scale motions in channel and boundary-layer flows. Phil. Trans. R. Soc. Lond. A 365, 665681.

B. Bamieh & M. Dahleh 2001 Energy amplification in channel flows with stochastic excitation. Phys. Fluids 13 (11), 32583269.

K. M. Butler & B. F. Farrell 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A 4, 16371650.

K. M. Butler & B. F. Farrell 1993 Optimal perturbations and streak spacing in wall-bounded turbulent shear flow. Phys. Fluids A 5 (3), 774777.

D. Chung & B. J. McKeon 2010 Large-eddy simulation investigation of large-scale structures in a long channel flow. J. Fluid Mech. 661, 341364.

D. E. Coles 1956 The law of the wake in the turbulent boundary layer. J. Fluid Mech. 1, 191226.

D. B. De Graaff & J. K. Eaton 2000 Reynolds-number scaling of the flat-plate turbulent boundary layer. J. Fluid Mech. 422, 319346.

B. F. Farrell & P. J. Ioannou 1993a Optimal excitation of three-dimensional perturbations in viscous constant shear flow. Phys. Fluids A 5 (6), 13901400.

B. F. Farrell & P. J. Ioannou 1993b Stochastic forcing of the linearized Navier–Stokes equations. Phys. Fluids A 5 (11), 26002609.

B. F. Farrell & P. J. Ioannou 1998 Perturbation structure and spectra in turbulent channel flow. Theor. Comput. Fluid Dyn. 11, 237250.

H. H. Fernholz , E. Krause , M. Nockemann & M. Schober 1995 Comparative measurements in the canonical boundary layer at $R{e}_{\theta } \leq 6\times 1{0}^{4} $ on the wall of the German–Dutch windtunnel. Phys. Fluids 7, 12751281.

O. Flores & J. Jiménez 2010 Hierarchy of minimal flow units in the logarithmic layer. Phys. Fluids 22, 071704.

M. Gad-El-Hak & P. R. Bandyopadhyay 1994 Reynolds number effects in wall-bounded turbulent flows. Appl. Mech. Rev. 47 (8), 307365.

M. Grant & S. Boyd 2008 Graph implementations for nonsmooth convex programs. In Recent Advances in Learning and Control (ed. V. Blondel , S. Boyd & H. Kimura ), pp. 95110. Springer,

M. Guala , S. E. Hommema & R. J. Adrian 2006 Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 554, 521542.

L. H. Gustavsson 1991 Energy growth of three-dimensional disturbances in plane Poiseuille flow. J. Fluid Mech. 224, 241260.

N. Halko , P. G. Martinsson & J. A. Tropp 2011 Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53 (2), 217288.

J. M. Hamilton , J. Kim & F. Waleffe 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.

M. R. Head & P. Bandyopadhyay 1981 New aspects of turbulent boundary-layer structure. J. Fluid Mech. 107, 297338.

S. Hoyas & J. Jiménez 2006 Scaling of the velocity fluctuations in turbulent channels up to $R{e}_{\tau } = 2003$. Phys. Fluids 18 (1), 011702.

M. Hultmark , M. Vallikivi , S. C. C. Bailey & A. J. Smits 2012 Turbulent pipe flow at extreme Reynolds numbers. Phys. Rev. Lett. 108 (9), 94501.

N. Hutchins & I. Marusic 2007a Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.

N. Hutchins & I. Marusic 2007b Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. Lond. A 365, 647664.

N. Hutchins , J. P. Monty , B. Ganapathisubramani , H. C. H. Ng & I. Marusic 2011 Three-dimensional conditional structure of a high-Reynolds number turbulent boundary layer. J. Fluid Mech. 673, 255285.

N. Hutchins , T. B. Nickels , I. Marusic & M. S. Chong 2009 Hot-wire spatial resolution issues in wall-bounded turbulence. J. Fluid Mech. 635, 103136.

Y. Hwang & C. Cossu 2010 Linear non-normal energy amplification of harmonic and stochastic forcing in the turbulent channel flow. J. Fluid Mech. 664, 5173.

Y. Hwang & C. Cossu 2011 Self-sustained processes in the logarithmic layer of turbulent channel flows. Phys. Fluids 23, 061702.

M. Inoue , R. Mathis , I. Marusic & D. I. Pullin 2012 Inner-layer intensities for the flat-plate turbulent boundary layer combining a predictive wall-model with large-eddy simulations. Phys. Fluids 24, 075102.

J. Jiménez 2012 Cascades in wall-bounded turbulence. Annu. Rev. Fluid Mech. 44, 27–45.

J. Jiménez & S. Hoyas 2008 Turbulent fluctuations above the buffer layer of wall-bounded flows. J. Fluid Mech. 611, 215236.

M. R. Jovanović & B. Bamieh 2005 Componentwise energy amplification in channel flows. J. Fluid Mech. 534, 145183.

R. R. Kerswell 2005 Recent progress in understanding the transition to turbulence in a pipe. Nonlinearity 18, R17R44.

K. C. Kim & R. J. Adrian 1999 Very large-scale motion in the outer layer. Phys. Fluids 11, 417422.

J. Kim & F. Hussain 1993 Propagation velocity of perturbations in turbulent channel flow. Phys. Fluids A 5, 695706.

J. Kim & J. Lim 2000 A linear process in wall-bounded turbulent shear flows. Phys. Fluids 12 (8), 18851888.

S. J. Kline , W. C. Reynolds , F. A. Schraub & P. W. Runstadler 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30, 741773.

B. G. B. Klingmann 1992 On transition due to three-dimensional disturbances in plane Poiseuille flow. J. Fluid Mech. 240, 167195.

G. J. Kunkel & I. Marusic 2006 Study of the near-wall-turbulent region of the high-Reynolds-number boundary layer using an atmospheric flow. J. Fluid Mech. 548, 375402.

M. T. Landahl 1975 Wave breakdown and turbulence. SIAM J. Appl. Maths 28, 735756.

J. LeHew , M. Guala & B. J. McKeon 2011 A study of the three-dimensional spectral energy distribution in a zero pressure gradient turbulent boundary layer. Exp. Fluids 51, 9971012.

R. R. Long & T. C. Chen 1981 Experimental evidence for the existence of the mesolayer in turbulent systems. J. Fluid Mech. 105, 1959.

W. V. R. Malkus 1956 Outline of a theory of turbulent shear flow. J. Fluid Mech. 1 (5), 521539.

I. Marusic & G. J. Kunkel 2003 Streamwise turbulence intensity formulation for flat-plate boundary layers. Phys. Fluids 15 (8), 24612464.

I. Marusic , R. Mathis & N. Hutchins 2010a High Reynolds number effects in wall turbulence. Intl J. Heat Fluid Flow 31, 418428.

I. Marusic , R. Mathis & N. Hutchins 2010b Predictive model for wall-bounded turbulent flow. Science 329 (5988), 193196.

I. Marusic , B. J. McKeon , P. A. Monkewitz , H. M. Nagib , A. J. Smits & K. R. Sreenivasan 2010c Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22, 065103.

I. Marusic , J. P. Monty , M. Hultmark & A. J. Smits 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3-1-716R3-11.

R. Mathis , N. Hutchins & I. Marusic 2009a Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311337.

R. Mathis , J. P. Monty , N. Hutchins & I. Marusic 2009b Comparison of large-scale amplitude modulation in turbulent boundary layers, pipes, and channel flows. Phys. Fluids 21, 111703.

M. Matsubara & P. H. Alfredsson 2001 Disturbance growth in boundary layers subjected to free stream turbulence. J. Fluid Mech. 430, 149168.

B. J. McKeon & A. S. Sharma 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.

B. J. McKeon , A. S. Sharma & I. Jacobi 2013 Experimental manipulation of wall turbulence: a systems approach. Phys. Fluids 25, 031301.

A. Meseguer & L. N. Trefethen 2003 Linearized pipe flow to Reynolds number $1{0}^{7} $. J. Comput. Phys. 186, 178197.

M. M. Metzger & J. C. Klewicki 2001 A comparative study of near-wall turbulence in high and low Reynolds number boundary layers. Phys. Fluids 13, 692701.

Y. Mizuno & J. Jiménez 2013 Wall turbulence without walls. J. Fluid Mech. 723, 429455.

R. Moarref & M. R. Jovanović 2012 Model-based design of transverse wall oscillations for turbulent drag reduction. J. Fluid Mech. 707, 205240.

J. P. Monty & M. S. Chong 2009 Turbulent channel flow: comparison of streamwise velocity data from experiments and direct numerical simulation. J. Fluid Mech. 633, 461474.

J. P. Monty , N. Hutchins , H. C. H. Ng , I. Marusic & M. S. Chong 2009 A comparison of turbulent pipe, channel and boundary layer flows. J. Fluid Mech. 632, 431442.

J. P. Monty , J. A. Stewart , R. C. Williams & M. S. Chong 2007 Large-scale features in turbulent pipe and channel flows. J. Fluid Mech. 589, 147156.

J. F. Morrison , B. J. McKeon , W. Jiang & A. J. Smits 2004 Scaling of the streamwise velocity component in turbulent pipe flow. J. Fluid Mech. 508, 99131.

H. M. Nagib & K. A. Chauhan 2008 Variations of von Kármán coefficient in canonical flows. Phys. Fluids 20, 101518.

R. L. Panton 2001 Overview of the self-sustaining mechanisms of wall turbulence. Prog. Aerosp. Sci. 37 (4), 341383.

A. E. Perry & M. S. Chong 1982 On the mechanism of wall turbulence. J. Fluid Mech. 119, 106121.

G. Pujals , M. García-Villalba , C. Cossu & S. Depardon 2009 A note on optimal transient growth in turbulent channel flows. Phys. Fluids 21 (1), 015109.

S. C. Reddy & D. S. Henningson 1993 Energy growth in viscous channel flows. J. Fluid Mech. 252, 209238.

W. C. Reynolds & A. K. M. F. Hussain 1972 The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54 (2), 263288.

W. C. Reynolds & W. G. Tiederman 1967 Stability of turbulent channel flow with application to Malkus’s theory. J. Fluid Mech. 27 (2), 253272.

S. K. Robinson 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.

P. J. Schmid 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.

P. J. Schmid & D. D. Henningson 1994 Optimal energy density growth in Hagen–Poiseuille flow. J. Fluid Mech. 277, 197225.

P. J. Schmid & D. S. Henningson 2001 Stability and Transition in Shear Flows. Springer.

W. Schoppa & F. Hussain 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.

M. P. Schultz & K. A. Flack 2013 Reynolds-number scaling of turbulent channel flow. Phys. Fluids 25, 025104.

A. S. Sharma & B. J. McKeon 2013 On coherent structure in wall turbulence. J. Fluid Mech. 728, 196238.

C. R. Smith & S. P. Metzler 1983 The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer. J. Fluid Mech. 129, 2754.

A. J. Smits , B. J. McKeon & I. Marusic 2011 High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353375.

G. Taylor 1938 The spectrum of turbulence. Proc. R. Soc. Lond. A 164 (919), 476490.

C. D. Tomkins & R. J. Adrian 2003 Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 3774.

L. N. Trefethen , A. E. Trefethen , S. C. Reddy & T. A. Driscoll 1993 Hydrodynamic stability without eigenvalues. Science 261, 578584.

F. Waleffe 1997 On a self-sustaining process in shear flows. Phys. Fluids 9 (4), 883900.

F. Waleffe 2003 Homotopy of exact coherent structures in plane shear flows. Phys. Fluids 15, 15171534.

H. Wedin & R. R. Kerswell 2004 Exact coherent structures in pipe flow: travelling wave solutions. J. Fluid Mech. 508, 333371.

T. Wei , P. Fife , J. Klewicki & P. McMurtry 2005 Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows. J. Fluid Mech. 522, 303327.

J. A. C. Weideman & S. C. Reddy 2000 A MATLAB differentiation matrix suite. ACM Trans. Math. Softw. 26 (4), 465519.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 47 *
Loading metrics...

Abstract views

Total abstract views: 161 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st September 2017. This data will be updated every 24 hours.