No CrossRef data available.
Published online by Cambridge University Press: 15 May 2025
Turbulent mixing driven by the reshocked Richtmyer–Meshkov (RM) instability plays a critical role in numerous natural phenomena and engineering applications. As the most fundamental physical quantity characterizing the mixing process, the mixing width transitions from linear to power-law growth following the initial shock. However, there is a notable absence of quantitative models for predicting the pronounced compression of initial interface perturbations or mixing regions at the moment of shock impact. This gap has restricted the development of integrated algebraic models to only the pre- and post-shock evolution stages. To address this limitation, the present study develops a predictive model for the compression of the mixing width induced by shocks. Based on the general principle of growth rate decomposition proposed by Li et al. (Phy. Rev. E, vol. 103, issue 5, 2021, 053109), two distinct types of shock-induced compression processes are identified, differentiated by the dominant mechanism governing their evolution: light–heavy and heavy–light shock-induced compression. For light–heavy interactions, both stretching (compression) and penetration mechanisms are influential, whereas heavy–light interactions are governed predominantly by the stretching (compression) mechanism. To characterize these mechanisms, the average velocity difference between the extremities of the mixing zone is quantified, and a physical model of RM mixing is utilized. A quantitative theoretical model is subsequently formulated through the independent algebraic modelling of these two mechanisms. The proposed model demonstrates excellent agreement with numerical simulations of reshocked RM mixing, offering valuable insights for the development of integrated algebraic models for mixing width evolution.