Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-29T10:02:45.839Z Has data issue: false hasContentIssue false

Modelling the passive breakup of a surfactant-contaminated droplet in a T-junction microchannel

Published online by Cambridge University Press:  06 May 2024

Jinggang Zhang*
Affiliation:
School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
Yongguang Wang
Affiliation:
School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
Li Chen
Affiliation:
School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
Linjun Shen
Affiliation:
School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
Haihang Cui*
Affiliation:
School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
*
Email addresses for correspondence: jinggangzhang@stu.xjtu.edu.cn, cuihaihang@xauat.edu.cn
Email addresses for correspondence: jinggangzhang@stu.xjtu.edu.cn, cuihaihang@xauat.edu.cn

Abstract

A lattice Boltzmann method is used to explore the effect of surfactants on the unequal volume breakup of a droplet in a T-junction microchannel, and the asymmetry due to fabrication defects in real-life microchannels is modelled as the pressure difference between the two branch outlets ($\Delta {P^\ast }$). We first study the effect of the surfactants on the droplet dynamics at different dimensionless initial droplet lengths ($l_0^\ast $) and capillary numbers (Ca) under symmetric boundary conditions ($\Delta {P^\ast } = 0$). The results indicate that the presence of surfactants promotes droplet deformation and breakup at small and moderate $l_0^\ast $ values, while the surfactant effect is weakened at large $l_0^\ast $ values. When the branch channels are completely blocked by the droplet, a linear relationship is observed between the dimensionless droplet length ($l_d^\ast $) and dimensionless time (${t^\ast }$), and two formulas are proposed for predicting the evolution of $l_d^\ast $ with ${t^\ast }$ for the two systems. We then investigate the effect of the surfactants on the droplet breakup at different values of $\Delta {P^\ast }$ and bulk surfactant concentrations (${\psi _b}$) under asymmetric boundary conditions ($\Delta {P^\ast } \ne 0$). It is observed that, as $\Delta {P^\ast }$ increases, the volume ratio of the generated droplets (${V_1}/{V_2}$) decreases to 0 in both systems, while the rate of decrease is higher in the clean system, i.e. the presence of surfactants could cause a decreased pressure difference between the droplet tips. As ${\psi _b}$ increases, ${V_1}/{V_2}$ first increases rapidly, then remains almost constant and finally decreases slightly. We thus establish a phase diagram that describes the ${V_1}/{V_2}$ variation with $\Delta {P^\ast }$ and ${\psi _b}$.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akai, T., Bijeljic, B. & Blunt, M.J. 2018 Wetting boundary condition for the color-gradient lattice Boltzmann method: validation with analytical and experimental data. Adv. Water Resour. 116, 5666.CrossRefGoogle Scholar
Baret, J.-C., Kleinschmidt, F., Harrak, A.E. & Griffiths, A.D. 2009 Kinetic aspects of emulsion stabilization by surfactants: a microfluidic analysis. Langmuir 25, 60886093.CrossRefGoogle ScholarPubMed
Chagot, L., Quilodrán-Casas, C., Kalli, M., Kovalchuk, N.M., Simmons, M.J.H., Matar, O.K., Arcucci, R. & Angeli, P. 2022 Surfactant-laden droplet size prediction in a flow-focusing microchannel: a data-driven approach. Lab on a Chip 22, 38483859.CrossRefGoogle Scholar
Chen, H., Filippova, O., Hoch, J., Molvig, K., Shock, R., Teixeira, C. & Zhang, R. 2006 Grid refinement in lattice Boltzmann methods based on volumetric formulation. Physica A 362, 158167.CrossRefGoogle Scholar
Chen, X., Xue, C. & Hu, G. 2019 Confinements regulate capillary instabilities of fluid threads. J. Fluid Mech. 873, 816834.CrossRefGoogle Scholar
Chen, Y. & Deng, Z. 2017 Hydrodynamics of a droplet passing through a microfluidic T-junction. J. Fluid Mech. 819, 401434.CrossRefGoogle Scholar
Fu, T., Ma, Y. & Li, H.Z. 2014 Hydrodynamic feedback on bubble breakup at a T-junction within an asymmetric loop. AIChE J. 60, 19201929.CrossRefGoogle Scholar
Geier, M., Greiner, A. & Korvink, J.G. 2009 Bubble functions for the lattice Boltzmann method and their application to grid refinement. Eur. Phys. J. 171, 173179.Google Scholar
Gimondi, S., Ferreira, H., Reis, R.L. & Neves, N.M. 2023 Microfluidic devices: a tool for nanoparticle synthesis and performance evaluation. ACS Nano 17, 1420514225.CrossRefGoogle ScholarPubMed
Giuffrida, M.C., Cigliana, G. & Spoto, G. 2018 Ultrasensitive detection of lysozyme in droplet-based microfluidic devices. Biosens. Bioelectr. 104, 814.CrossRefGoogle ScholarPubMed
Hafen, N., Thieringer, J.R.D., Meyer, J., Krause, M.J. & Dittler, A. 2023 Numerical investigation of detachment and transport of particulate structures in wall-flow filters using lattice Boltzmann methods. J. Fluid Mech. 956, A30.CrossRefGoogle Scholar
Hoang, D.A., Haringa, C., Portela, L.M., Kreutzer, M.T., Kleijn, C.R. & van Steijn, V. 2014 Design and characterization of bubble-splitting distributor for scaled-out multiphase microreactors. Chem. Engng J. 236, 545554.CrossRefGoogle Scholar
Hoang, D.A., Portela, L.M., Kleijn, C.R., Kreutzer, M.T. & van Steijn, V. 2013 Dynamics of droplet breakup in a T-junction. J. Fluid Mech. 717, R4.CrossRefGoogle Scholar
Huang, R. & Wu, H. 2016 Total enthalpy-based lattice Boltzmann method with adaptive mesh refinement for solid-liquid phase change. J. Fluid Mech. 315, 6583.Google Scholar
Jiang, F., Yang, J., Boek, E. & Tsuji, T. 2021 Investigation of viscous coupling effects in three-phase flow by lattice Boltzmann direct simulation and machine learning technique. Adv. Water Resour. 147, 103797.CrossRefGoogle Scholar
Kalli, M. & Angeli, P. 2022 Effect of surfactants on drop formation flow patterns in a flow-focusing microchannel. Chem. Engng J. 253, 117517.Google Scholar
Leshansky, A.M., Afkhami, S., Jullien, M.C. & Tabeling, P. 2012 Obstructed breakup of slender drops in a microfluidic T junction. Phys. Rev. Lett. 108, 264502.CrossRefGoogle Scholar
Leshansky, A.M. & Pismen, L.M. 2009 Breakup of drops in a microfluidic T junction. Phys. Fluids 21, 023303.CrossRefGoogle Scholar
Liang, H., Shi, B.C., Guo, Z. & Chai, Z.H. 2014 Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows. Phys. Rev. E 89, 053320.CrossRefGoogle ScholarPubMed
Liu, H., Ba, Y., Wu, L., Li, Z., Xi, G. & Zhang, Y. 2018 A hybrid lattice Boltzmann and finite difference method for droplet dynamics with insoluble surfactants. J. Fluid Mech. 837, 381412.CrossRefGoogle Scholar
Liu, H., Zhang, J., Ba, Y., Wang, N. & Wu, L. 2020 Modelling a surfactant-covered droplet on a solid surface in three-dimensional shear flow. J. Fluid Mech. 897, A33.CrossRefGoogle Scholar
Nix, C., Ghassemi, M., Crommen, J. & Fillet, M. 2022 Overview on microfluidics devices for monitoring brain disorder biomarkers. Trends Anal. Chem. 155, 116693.CrossRefGoogle Scholar
Pan, K.-L., Tseng, Y.-H., Chen, J.-C., Huang, K.-L., Wang, C.-H. & Lai, M.-C. 2016 Controlling droplet bouncing and coalescence with surfactant. J. Fluid Mech. 799, 603636.CrossRefGoogle Scholar
Plateau, J. 1873 Experimental and Theoretical Steady State of Liquids Subjected to Nothing but Molecular Forces. Gauthiers-Villars.Google Scholar
Rayleigh, L. 1878 On the instability of jets. Proc. Lond. Math. Soc. 10, 413.CrossRefGoogle Scholar
Riaud, A., Zhang, H., Wang, X., Wang, K. & Luo, G. 2018 Nemerical study of surfactant dynamics during emulsification in a T-junction microchannel. Langmuir 34, 49804990.CrossRefGoogle Scholar
Sakai, T. 2008 Surfactant-free emulsions. Curr. Opin. Colloid Interface Sci. 13, 228235.CrossRefGoogle Scholar
Samie, M., Salari, A. & Shafii, M.B. 2013 Breakup of microdroplets in asymmetric T junctions. Phys. Rev. E 87, 053003.CrossRefGoogle ScholarPubMed
Seok, S.-J., Park, J.-S., Hong, J.-R., Gil, H.-W., Yang, J.-O., Lee, E.-Y., Song, H.-Y. & Song, S.-Y. 2011 Surfactant volume is an essential element in human toxicity in acute glyphosate herbicide intoxication. Clin. Toxicol. 49, 892899.CrossRefGoogle ScholarPubMed
Sharma, B. & Sharma, A. 2022 Microfluidics: recent advances toward lab-on-chip applications in bioanalysis. Adv. Engng Mater. 24, 2100738.CrossRefGoogle Scholar
Shimokawa, K., Ishii, F. & Ohshima, H. 2016 Physicochemical properties and clinical applications of surfactant-free emulsions prepared with electrolytic reduction ion water (Eri). In Encyclopedia of Biocolloid and Biointerface Science 2V Set, pp. 451458. John Wiley & Sons.CrossRefGoogle Scholar
Soligo, G., Roccon, A. & Soldati, A. 2019 Coalescence of surfactant-laden drops by phase field method. J. Fluid Mech. 376, 12921311.Google Scholar
Soligo, G., Roccon, A. & Soldati, A. 2020 Deformation of clean and surfactant-laden droplets in shear flow. Meccanica 55, 371386.CrossRefGoogle Scholar
Stone, H.A., Bentley, B.J. & Leal, L.G. 1986 An experimental study of transient effects in the breakup of viscous drops. J. Fluid Mech. 173, 131158.CrossRefGoogle Scholar
Sun, G., Qu, L., Azi, F., Liu, Y., Li, J., Lv, X., Du, G., Chen, J., Chen, C.-H. & Liu, L. 2023 Recent progress in high-throughput droplet screening and sorting for bioanalysis. Biosens. Bioelectr. 225, 115107.CrossRefGoogle ScholarPubMed
Sun, X., Zhu, C., Fu, T., Ma, Y. & Li, H.Z. 2019 Breakup dynamics of elastic droplet and stretching of polymeric filament in a T-junction. Chem. Engng Sci. 206, 212223.CrossRefGoogle Scholar
Verma, N. & Pandya, A. 2022 Challenges and opportunities in micro/nanofluidic and lab-on-a-chip. Prog. Mol. Biol. Transl. Sci. 186, 289302.CrossRefGoogle ScholarPubMed
Wang, N., Liu, H. & Zhang, C. 2016 Three-dimensional phase-field lattice Boltzmann model for incompressible multiphase flows. J. Comput. Sci. 17, 340356.CrossRefGoogle Scholar
Wang, X., Zhu, C., Wu, Y., Fu, T. & Ma, Y. 2015 Dynamics of bubble breakup with partly obstruction in a microfluidic T-junction. Chem. Engng Sci. 132, 128138.CrossRefGoogle Scholar
Wei, B., Huang, H., Hou, J. & Sukop, M.C. 2018 Study on the meniscus-induced motion of droplets and bubbles by a three-phase lattice Boltzmann model. Chem. Engng Sci. 176, 3549.CrossRefGoogle Scholar
Whitesides, G.M. 2006 The origins and the future of microfluidics. Nature 442, 368373.CrossRefGoogle ScholarPubMed
Xu, R., Cheng, Y., Li, X., Zhang, Z., Zhu, M., Qi, X., Chen, L. & Han, L. 2022 Aptamer-based signal amplification strategies coupled with microchips for high-sensitivity bioanalytical applications: a review. Anal. Chim. Acta 1209, 339893.CrossRefGoogle ScholarPubMed
Xu, Z., Liu, H. & Valocchi, A.J. 2017 Lattice Boltzmann simulation of immiscible two-phase flow with capillary valve effect in porous media. Water Resour. Res. 53, 37703790.CrossRefGoogle Scholar
Yao, F., Zhu, P., Chen, J., Li, S., Sun, B., Li, Y., Zou, M., Qi, X., Liang, P. & Chen, Q. 2023 Synthesis of nanoparticles via microfluidic devices and integrated applications. Microchim. Acta 190, 121.CrossRefGoogle ScholarPubMed
Yu, Z. & Fan, L.-S. 2010 Multirelaxation-time interaction-potential-based lattice Boltzmann model for two-phase flow. Phys. Rev. E 82, 046708.CrossRefGoogle ScholarPubMed
Zhang, J., Cui, H., Liu, H., Chen, L., Zhang, X. & Li, C. 2023 a The surfactant role on a droplet passing through a constricted microchannel in a pressure-driven flow: a lattice Boltzmann study. Langmuir 39, 1373513747.CrossRefGoogle Scholar
Zhang, J., Liu, H. & Ba, Y. 2019 Numerical study of droplet dynamics on a solid surface with insoluble surfactants. Langmuir 35, 78587870.CrossRefGoogle ScholarPubMed
Zhang, J., Liu, H., Wei, B., Hou, J. & Jiang, F. 2021 a Pore-scale modeling of two-phase flows with soluble surfactants in porous media. Energy Fuels 35, 1937419388.CrossRefGoogle Scholar
Zhang, J., Liu, H. & Zhang, X. 2021 b Modeling the deformation of a surfactant-covered droplet under the combined influence of electric field and shear flow. Phys. Fluids 33, 042109.CrossRefGoogle Scholar
Zhang, J., Shen, H., Cui, H., Chen, L. & Chen, L.G. 2023 b The dynamic behavior of a self-propelled droplet on a conical fiber: a lattice Boltzmann study. Phys. Fluids 35, 082119.CrossRefGoogle Scholar
Zhang, J., Zhang, X., Zhao, W., Liu, H. & Jiang, Y. 2022 Effect of surfactants on droplet generation in a microfluidic T-junction: a lattice Boltzmann study. Phys. Fluids 34, 042121.CrossRefGoogle Scholar
Zhu, P. & Wang, L. 2017 Passive and active droplet generation with microfluidics: a review. Lab on a Chip 17, 3475.CrossRefGoogle Scholar
Zong, Y., Zhang, C., Liang, H., Wang, L. & Xu, J. 2020 Modeling surfactant-laden droplet dynamics by lattice Boltzmann method. Phys. Fluids 32, 122105.CrossRefGoogle Scholar
Zou, L., Huang, B., Zheng, X., Pan, H., Zhang, Q., Xie, W., Zhao, Z. & Li, X. 2022 Microfluidic synthesis of magnetic nanoparticles in droplet-based microreactors. Mater. Chem. Phys. 276, 125384.CrossRefGoogle Scholar