Hostname: page-component-cb9f654ff-mnl9s Total loading time: 0 Render date: 2025-08-10T13:38:04.790Z Has data issue: false hasContentIssue false

Modelling transitional rough-wall turbulence with quasi-linear approximations

Published online by Cambridge University Press:  29 July 2025

Yuxin Jiao*
Affiliation:
Department of Aeronautics, Imperial College London, London SW7 2AZ, UK CAPT-HEDPS, SKLTCS, Department of Mechanics and Engineering Science College of Engineering, Peking University, Beijing 100871, PR China
Zecheng Zou
Affiliation:
Department of Aeronautics, Imperial College London, London SW7 2AZ, UK
Shervin Bagheri
Affiliation:
FLOW, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
Yongyun Hwang
Affiliation:
Department of Aeronautics, Imperial College London, London SW7 2AZ, UK
*
Corresponding author: Yuxin Jiao, y.jiao17@pku.edu.cn

Abstract

The effects of surface roughness in the transitionally rough regime on the overlying near-wall turbulence are modelled using quasi-linear approximations proposed recently: minimal quasi-linear approximation (MQLA) (Hwang & Ekchardt, 2020, J. Fluid Mech., vol. 894, A23), data-driven quasi-linear approximation (DQLA) (Holford et al., 2024, J. Fluid Mech., vol. 980, A12) and a newly established variant of MQLA (M2QLA, minimal two-mode quasi-linear approximation). The transpiration-resistance model (TRM) for boundary conditions is applied to account for the surface roughness (Lācis et al., 2020, J. Fluid Mech., vol. 884, A21). It is shown that many essential near-wall turbulence statistics are fairly well captured by the quasi-linear approximations in a wide range of slip and transpiration lengths for the TRM boundary conditions. In particular, the virtual origins and the resulting roughness functions are well predicted, showing good agreement with those from previous direct numerical simulations (DNS) in mild roughness cases. The DQLA and M2QLA, which incorporate streamwise-dependent Fourier modes in the approximations, are also shown to perform a little better than MQLA, especially with DQLA reproducing the two-dimensional energy spectra qualitatively consistent with the DNS. Finally, with a computational cost much lower than DNS, it is shown that the proposed quasi-linear approximation frameworks offer an efficient tool to rapidly explore the roughness effects within a large parameter space.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abderrahaman-Elena, N., Fairhall, C.T. & García-Mayoral, R. 2019 Modulation of near-wall turbulence in the transitionally rough regime. J. Fluid Mech. 865, 10421071.CrossRefGoogle Scholar
Bechert, D.W. & Bartenwerfer, M. 1989 The viscous flow on surfaces with longitudinal ribs. J. Fluid Mech. 206, 105129.CrossRefGoogle Scholar
Bottaro, A. 2019 Flow over natural or engineered surfaces: an adjoint homogenization perspective. J. Fluid Mech. 877, P1.CrossRefGoogle Scholar
Busse, A. & Sandham, N.D. 2012 Influence of an anisotropic slip-length boundary condition on turbulent channel flow. Phys. Fluids 24 (5), 055111.CrossRefGoogle Scholar
Butler, K.M. & Farrell, B.F. 1993 Optimal perturbations and streak spacing in wall-bounded turbulent shear flow. Phys. Fluids 5 (3), 774777.CrossRefGoogle Scholar
Cess, R.D. 1958 A survey of the literature on heat transfer in turbulent tube flow. Westinghouse Research Rep. 8-0529.Google Scholar
Chavarin, A. & Luhar, M. 2020 Resolvent analysis for turbulent channel flow with riblets. AIAA J. 58 (2), 589600.CrossRefGoogle Scholar
Chernyshenko, S.I. & Baig, M.F. 2005 The mechanism of streak formation in near-wall turbulence. J. Fluid. Mech. 544, 99131.CrossRefGoogle Scholar
Choi, H., Moin, P. & Kim, J. 1994 Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech. 262, 75110.10.1017/S0022112094000431CrossRefGoogle Scholar
Chung, D., Hutchins, N., Schultz, M.P. & Flack, K.A. 2021 Predicting the drag of rough surfaces. Annu. Rev. Fluid Mech. 53 (1), 439471.CrossRefGoogle Scholar
Clauser, F.H. 1954 Turbulent boundary layers in adverse pressure gradients. J. Aeronaut. Sci. 21 (2), 91108.10.2514/8.2938CrossRefGoogle Scholar
Del Alamo, J.C. & Jimenez, J. 2006 Linear energy amplification in turbulent channels. J. Fluid. Mech. 559, 205213.CrossRefGoogle Scholar
Endrikat, S., Modesti, D., García-Mayoral, R., Hutchins, N. & Chung, D. 2021 a Influence of riblet shapes on the occurrence of Kelvin–Helmholtz rollers. J. Fluid Mech. 913, A37.CrossRefGoogle Scholar
Endrikat, S., Modesti, D., MacDonald, M., García-Mayoral, R., Hutchins, N. & Chung, D. 2021 b Direct numerical simulations of turbulent flow over various riblet shapes in minimal-span channels. Flow Turbul. Combust. 107 (1), 129.CrossRefGoogle Scholar
Fairhall, C.T., Abderrahaman-Elena, N. & García-Mayoral, R. 2019 The effect of slip and surface texture on turbulence over superhydrophobic surfaces. J. Fluid Mech. 861, 88118.CrossRefGoogle Scholar
Farrell, B.F. & Ioannou, P.J. 1993 Stochastic forcing of the linearized Navier–Stokes equations. Phys. Fluids A: Fluid Dyn. 5 (11), 26002609.CrossRefGoogle Scholar
Forooghi, P., Stroh, A., Schlatter, P. & Frohnapfel, B. 2018 Direct numerical simulation of flow over dissimilar, randomly distributed roughness elements: a systematic study on the effect of surface morphology on turbulence. Phys. Rev. Fluids 3 (4), 044605.10.1103/PhysRevFluids.3.044605CrossRefGoogle Scholar
García-Mayoral, R., Gómez-de-Segura, G. & Fairhall, C.T. 2019 The control of near-wall turbulence through surface texturing. Fluid Dyn. Res. 51 (1), 011410.CrossRefGoogle Scholar
Garcia-Mayoral, R. & Jiménez, J. 2011 Hydrodynamic stability and breakdown of the viscous regime over riblets. J. Fluid Mech. 678, 317347.CrossRefGoogle Scholar
Hama, F.R. 1954 Boundary layer characteristics for smooth and rough surfaces. Trans. Soc. Nav. Arch. Mar. Engrs 62, 333358.Google Scholar
Holford, J.J., Lee, M. & Hwang, Y. 2023 Optimal white-noise stochastic forcing for linear models of turbulent channel flow. J. Fluid Mech. 961, A32.CrossRefGoogle Scholar
Holford, J.J., Lee, M. & Hwang, Y. 2024 a A data-driven quasi-linear approximation for turbulent channel flow. J. Fluid Mech. 980, A12.CrossRefGoogle Scholar
Holford, J.J., Lee, M. & Hwang, Y., 2024 b The energetics and colour for linearised models of wall turbulence. J. Fluid Mech. 1000, A42.10.1017/jfm.2024.929CrossRefGoogle Scholar
Hwang, Y. 2015 Statistical structure of self-sustaining attached eddies in turbulent channel flow. J. Fluid Mech. 767, 254289.10.1017/jfm.2015.24CrossRefGoogle Scholar
Hwang, Y. 2016 Mesolayer of attached eddies in turbulent channel flow. Phys. Rev. Fluids 1 (6), 064401.CrossRefGoogle Scholar
Hwang, Y. 2024 Near-wall streamwise turbulence intensity as Re τ → ∞. Phys. Rev. Fluids 9, 044601.CrossRefGoogle Scholar
Hwang, Y. & Bengana, Y. 2016 Self-sustaining process of minimal attached eddies in turbulent channel flow. J. Fluid Mech. 795, 708738.CrossRefGoogle Scholar
Hwang, Y. & Cossu, C. 2010 Linear non-normal energy amplification of harmonic and stochastic forcing in turbulent channel flow. J. Fluid. Mech. 664, 5173.CrossRefGoogle Scholar
Hwang, Y. & Eckhardt, B. 2020 Attached eddy model revisited using a minimal quasi-linear approximation. J. Fluid Mech. 894, A23.10.1017/jfm.2020.285CrossRefGoogle Scholar
Ibrahim, J.I., Gómez-de-Segura, G., Chung, D. & García-Mayoral, R. 2021 The smooth-wall-like behaviour of turbulence over drag-altering surfaces: a unifying virtual-origin framework. J. Fluid Mech. 915, A56.10.1017/jfm.2021.13CrossRefGoogle Scholar
Ibrahim, J.I., Yang, Q., Doohan, P. & Hwang, Y. 2019 Phase-space dynamics of opposition control in wall-bounded turbulent flows. J. Fluid Mech. 861, 2954.10.1017/jfm.2018.905CrossRefGoogle Scholar
Illingworth, S.J., Monty, J.P. & Marusic, I. 2018 Estimating large-scale structures in wall turbulence using linear models. J. Fluid Mech. 842, 146162.CrossRefGoogle Scholar
Jimenez, J., Uhlmann, M., Pinelli, A. & Kawahara, G. 2001 Turbulent shear flow over active and passive porous surfaces. J. Fluid Mech. 442, 89117.CrossRefGoogle Scholar
Jovanović, M.R. & Bamieh, B. 2005 Componentwise energy amplification in channel flows. J. Fluid Mech. 534, 145183.CrossRefGoogle Scholar
Khorasani, S.M.H., Lācis, U., Pasche, S., Rosti, M.E. & Bagheri, S. 2022 Near-wall turbulence alteration with the transpiration-resistance model. J. Fluid Mech. 942, A45.CrossRefGoogle Scholar
Kuwata, Y. & Suga, K. 2017 Direct numerical simulation of turbulence over anisotropic porous media. J. Fluid Mech. 831, 4171.10.1017/jfm.2017.619CrossRefGoogle Scholar
Lācis, U. & Bagheri, S. 2017 A framework for computing effective boundary conditions at the interface between free fluid and a porous medium. J. Fluid Mech. 812, 866889.CrossRefGoogle Scholar
Lācis, U., Sudhakar, Y., Pasche, S. & Bagheri, S. 2020 Transfer of mass and momentum at rough and porous surfaces. J. Fluid Mech. 884, A21.CrossRefGoogle Scholar
Lauga, E. & Stone, H.A. 2003 Effective slip in pressure-driven Stokes flow. J. Fluid Mech. 489, 5577.CrossRefGoogle Scholar
Lee, M. & Moser, R.D. 2015 Direct numerical simulation of turbulent channel flow up to. J. Fluid Mech. 774, 395415.CrossRefGoogle Scholar
Leonardi, S., Orlandi, P., Smalley, R.J., Djenidi, L. & Antonia, R.A. 2003 Direct numerical simulations of turbulent channel flow with transverse square bars on one wall. J. Fluid Mech. 491, 229238.10.1017/S0022112003005500CrossRefGoogle Scholar
Luchini, P. 1996 Reducing the turbulent skin friction. Comput. Meth. Appl. Sci. 96, 465470.Google Scholar
Luchini, P., Manzo, F. & Pozzi, A. 1991 Resistance of a grooved surface to parallel flow and cross-flow. J. Fluid Mech. 228, 87109.10.1017/S0022112091002641CrossRefGoogle Scholar
Luchini, P. et al. 2015 The relevance of longitudinal and transverse protrusion heights for drag reduction by a superhydrophobic surface. In Proceedings of the European Drag Reduction and Flow Control Meeting Meeting–EDRFMC 2015, pp. 8182.Google Scholar
Luhar, M., Sharma, A.S. & McKeon, B.J. 2014 Opposition control within the resolvent analysis framework. J. Fluid Mech. 749, 597626.10.1017/jfm.2014.209CrossRefGoogle Scholar
Madhusudanan, A., Illingworth, S.J. & Marusic, I. 2019 Coherent large-scale structures from the linearized Navier–Stokes equations. J. Fluid Mech. 873, 89109.CrossRefGoogle Scholar
McKeon, B.J. & Sharma, A.S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.CrossRefGoogle Scholar
Min, T. & Kim, J. 2004 Effects of hydrophobic surface on skin-friction drag. Phys. Fluids 16 (7), L55L58.CrossRefGoogle Scholar
Moarref, R. & Jovanović, M. 2012 Model-based design of transverse wall oscillations for turbulent drag reduction. J. Fluid Mech. 707, 205240.CrossRefGoogle Scholar
Orlandi, P., Leonardi, S. & Antonia, R.A. 2006 Turbulent channel flow with either transverse or longitudinal roughness elements on one wall. J. Fluid Mech. 561, 279305.CrossRefGoogle Scholar
Pujals, G., García-Villalba, M., Cossu, C. & Depardon, S. 2009 A note on optimal transient growth in turbulent channel flows. Phys. Fluids 21 (1), 015109.CrossRefGoogle Scholar
Ran, W., Zare, A. & Jovanović, M.R. 2021 Model-based design of riblets for turbulent drag reduction. J. Fluid Mech. 906, A7.10.1017/jfm.2020.722CrossRefGoogle Scholar
Schultz, M.P., Bendick, J.A., Holm, E.R. & Hertel, W.M. 2011 Economic impact of biofouling on a naval surface ship. Biofouling 27 (1), 8798.CrossRefGoogle ScholarPubMed
Gómez-de-Segura, G., Fairhall, C.T., MacDonald, M., Chung, D. & Garcia-Mayoral, R. 2018. Manipulation of near-wall turbulence by surface slip and permeability.10.1088/1742-6596/1001/1/012011CrossRefGoogle Scholar
Gómez-de-Segura, G. & García-Mayoral, R. 2019 Turbulent drag reduction by anisotropic permeable substrates – analysis and direct numerical simulations. J. Fluid Mech. 875, 124172.10.1017/jfm.2019.482CrossRefGoogle Scholar
Gómez-de-Segura, G. & García-Mayoral, R. 2020 Imposing virtual origins on the velocity components in direct numerical simulations. Intl J. Heat Fluid Flow 86, 108675.CrossRefGoogle Scholar
Skouloudis, N. & Hwang, Y. 2022 Scaling of turbulence intensities up to Re τ = 106 with a resolvent-based quasilinear approximation. Phys. Rev. Fluids 6, 034612.Google Scholar
Stevens, R.J.A.M. & Meneveau, C. 2017 Flow structure and turbulence in wind farms. Annu. Rev. Fluid Mech. 49 (1), 311339.CrossRefGoogle Scholar
Sudhakar, Y., Lācis, U., Pasche, S. & Bagheri, S. 2021 Higher-order homogenized boundary conditions for flows over rough and porous surfaces. Transp. Porous Media 136 (1), 142.10.1007/s11242-020-01495-wCrossRefGoogle Scholar
Towne, A., Lozano-Durán, A. & Yang, X. 2020 Resolvent-based estimation of space–time flow statistics. J. Fluid Mech. 883, A17.10.1017/jfm.2019.854CrossRefGoogle Scholar
Townsend, A.A.R. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Weideman, J.A. & Reddy, S.C. 2000 A Matlab differentiation matrix suite. ACM Trans. Math. Softw. 26 (4), 465519.CrossRefGoogle Scholar
Willis, A.P., Hwang, Y. & Cossu, C. 2010 Optimally amplified large-scale streaks and drag reduction in turbulent pipe flow. Phys. Rev. E 82 (3), 036321.10.1103/PhysRevE.82.036321CrossRefGoogle ScholarPubMed
Zampino, G., Lasagna, D. & Ganapathisubramani, B. 2022 Linearised Reynolds-averaged predictions of secondary currents in turbulent channels with topographic heterogeneity. J. Fluid Mech. 944, A4.10.1017/jfm.2022.478CrossRefGoogle Scholar
Zampogna, G.A., Magnaudet, J. & Bottaro, A. 2019 Generalized slip condition over rough surfaces. J. Fluid Mech. 858, 407436.10.1017/jfm.2018.780CrossRefGoogle Scholar
Zare, A., Jovanović, M.R. & Georgiou, T.T. 2017 Colour of turbulence. J. Fluid Mech. 812, 636680.CrossRefGoogle Scholar