Skip to main content
    • Aa
    • Aa

Moderate Reynolds number flows through periodic and random arrays of aligned cylinders

  • DONALD L. KOCH (a1) and ANTHONY J. C. LADD (a2)
    • Published online: 25 October 1997

The effects of fluid inertia on the pressure drop required to drive fluid flow through periodic and random arrays of aligned cylinders is investigated. Numerical simulations using a lattice-Boltzmann formulation are performed for Reynolds numbers up to about 180.

The magnitude of the drag per unit length on cylinders in a square array at moderate Reynolds number is strongly dependent on the orientation of the drag (or pressure gradient) with respect to the axes of the array; this contrasts with Stokes flow through a square array, which is characterized by an isotropic permeability. Transitions to time-oscillatory and chaotically varying flows are observed at critical Reynolds numbers that depend on the orientation of the pressure gradient and the volume fraction.

In the limit Re[Lt ]1, the mean drag per unit length, F, in both periodic and random arrays, is given by F/(μU) =k1+k2Re2, where μ is the fluid viscosity, U is the mean velocity in the bed, and k1 and k2 are functions of the solid volume fraction ϕ. Theoretical analyses based on point-particle and lubrication approximations are used to determine these coefficients in the limits of small and large concentration, respectively.

In random arrays, the drag makes a transition from a quadratic to a linear Re-dependence at Reynolds numbers of between 2 and 5. Thus, the empirical Ergun formula, F/(μU) =c1+c2Re, is applicable for Re>5. We determine the constants c1 and c2 over a wide range of ϕ. The relative importance of inertia becomes smaller as the volume fraction approaches close packing, because the largest contribution to the dissipation in this limit comes from the viscous lubrication flow in the small gaps between the cylinders.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 1
Total number of PDF views: 126 *
Loading metrics...

Abstract views

Total abstract views: 156 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd October 2017. This data will be updated every 24 hours.