Hostname: page-component-65f69f4695-kztdx Total loading time: 0 Render date: 2025-06-28T15:47:11.777Z Has data issue: false hasContentIssue false

Molecular streaming in a charged angstrom channel: a toy model

Published online by Cambridge University Press:  03 June 2025

Shuyong Luan
Affiliation:
Key Laboratory of Aircraft Configuration Design, School of Aeronautics and Institute of Extreme Mechanics, Northwestern Polytechnical University, Xi’an 710072, PR China
Jiajia Lu
Affiliation:
School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710072, PR China
Yanbo Xie*
Affiliation:
Key Laboratory of Aircraft Configuration Design, School of Aeronautics and Institute of Extreme Mechanics, Northwestern Polytechnical University, Xi’an 710072, PR China
*
Corresponding author: Yanbo Xie, ybxie@nwpu.edu.cn

Abstract

Numerous studies showed that the flow and transport phenomena in angstrom channels are different from existing understandings. In this work, we investigate the electrokinetic phenomena in a charged angstrom channel, including homogeneous and heterogeneous charge distributions at the wall to mimic the charging mechanisms of electrified metal-like surfaces and deprotonated dielectric surfaces, respectively. Our results show that both the streaming current and the flow velocity linearly increase as the applied pressure increases in a homogeneously charged system. However, in a heterogeneously charged system, the streaming current is activated only when the applied pressure exceeds a critical threshold. This behaviour arises from the strong Coulomb interactions between counterions and the surface charge, manifesting as an obvious nonlinear feature. The dissociation of counterions from the surface charge may not only cause pressure-dependent streaming conductance but also reduce the friction coefficient of the system, thus the flow resistance, when the system friction is governed by the bound ions. We found that such pressure-dependent streaming conductance gradually weakens as the channel size increases and reaches the regime of classical nanofluidic theories. Taking one-dimensional non-equilibrium statistics and Markov chains for the sequence evolution of bound-ion dissociation, our theory can well explain the pressure-dependent streaming conductance and water permeability in angstrom charged channels. Voltage-driven nonlinear ionic transport and electro-osmosis were also observed in heterogeneously charged systems. Our findings will be helpful for understanding the ionic transport in angstrom-scale channels and possibly useful in ion separations.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Behrens, S.H. & Grier, D.G. 2001 The charge of glass and silica surfaces. J. Chem. Phys. 115 (14), 67166721.CrossRefGoogle Scholar
Biriukov, D., Kroutil, O. & Předota, M. 2018 Modeling of solid–liquid interfaces using scaled charges: rutile (110) surfaces. Phys. Chem. Chem. Phys. 20 (37), 2395423966.CrossRefGoogle ScholarPubMed
Bocquet, L. & Barrat, J.-L. 2013 On the Green-Kubo relationship for the liquid-solid friction coefficient. J. Chem. Phys. 139 (4), 044704.CrossRefGoogle ScholarPubMed
Bocquet, L. & Charlaix, E. 2010 Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 39 (3), 10731095.CrossRefGoogle ScholarPubMed
Delgado, A.V., González-Caballero, F., Hunter, R.J., Koopal, L.K. & Lyklema, J. 2007 Measurement and interpretation of electrokinetic phenomena. J. Colloid Interface Sci. 309 (2), 194224.10.1016/j.jcis.2006.12.075CrossRefGoogle ScholarPubMed
Emmerich, T., Vasu, K.S., Niguès, A., Keerthi, A., Radha, B., Siria, A. & Bocquet, L. 2022 Enhanced nanofluidic transport in activated carbon nanoconduits. Nat. Mater. 21 (6), 696702.10.1038/s41563-022-01229-xCrossRefGoogle ScholarPubMed
Esfandiar, A., Radha, B., Wang, F.C., Yang, Q., Hu, S., Garaj, S., Nair, R.R., Geim, A.K. & Gopinadhan, K. 2017 Size effect in ion transport through angstrom-scale slits. Science 358 (6362), 511513.10.1126/science.aan5275CrossRefGoogle ScholarPubMed
Falk, K., Sedlmeier, F., Joly, L., Netz, R.R. & Bocquet, L. 2010 Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett. 10 (10), 40674073.CrossRefGoogle ScholarPubMed
Fu, L., Merabia, S. & Joly, L. 2017 What controls thermo-osmosis? molecular simulations show the critical role of interfacial hydrodynamics. Phys. Rev. Lett. 119 (21), 214501.10.1103/PhysRevLett.119.214501CrossRefGoogle ScholarPubMed
Fu, L., Merabia, S. & Joly, L. 2018 Understanding fast and robust thermo-osmotic flows through carbon nanotube membranes: thermodynamics meets hydrodynamics. J. Phys. Chem. Lett. 9 (8), 20862092.CrossRefGoogle ScholarPubMed
Fumagalli, L., 2018 Anomalously low dielectric constant of confined water. Science 360 (6395), 13391342.10.1126/science.aat4191CrossRefGoogle ScholarPubMed
Hartkamp, R., Biance, A.-L., Fu, L., Dufrêche, J.-F., Bonhomme, O. & Joly, L. 2018 Measuring surface charge: why experimental characterization and molecular modeling should be coupled. Curr. Opinion Colloid Intrface Sci. 37, 101114.CrossRefGoogle Scholar
Holt, J.K., Park, H.G., Wang, Y., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P., Noy, A. & Bakajin, O. 2006 Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312 (5776), 10341037.10.1126/science.1126298CrossRefGoogle ScholarPubMed
Huang, D.M., Cottin-Bizonne, C., Ybert, C. & Bocquet, L. 2007 Ion-specific anomalous electrokinetic effects in hydrophobic nanochannels. Phys. Rev. Lett. 98 (17), 177801.10.1103/PhysRevLett.98.177801CrossRefGoogle ScholarPubMed
Huang, D.M., Cottin-Bizonne, C., Ybert, C. & Bocquet, L. 2008 Aqueous electrolytes near hydrophobic surfaces: dynamic effects of ion specificity and hydrodynamic slip. Langmuir 24 (4), 14421450.CrossRefGoogle ScholarPubMed
Itoh, Y., 2022 Ultrafast water permeation through nanochannels with a densely fluorous interior surface. Science 376 (6594), 738743.10.1126/science.abd0966CrossRefGoogle ScholarPubMed
Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W. & Klein, M.L. 1983 Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79 (2), 926935.10.1063/1.445869CrossRefGoogle Scholar
Joung, I.S. & Cheatham, T.E. 2008 Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B 112 (30), 90209041.CrossRefGoogle ScholarPubMed
Kavokine, N., Marbach, S., Siria, A. & Bocquet, L. 2019 Ionic Coulomb blockade as a fractional Wien effect. Nat. Nanotechnol. 14 (6), 573578.CrossRefGoogle ScholarPubMed
Kavokine, N., Netz, R.R. & Bocquet, L. 2021 Fluids at the nanoscale: from continuum to subcontinuum transport. Annu. Rev. Fluid Mech. 53 (1), 377410.CrossRefGoogle Scholar
Kavokine, N., Robin, P. & Bocquet, L. 2022 Interaction confinement and electronic screening in two-dimensional nanofluidic channels. J. Chem. Phys. 157 (11), 114703.10.1063/5.0102002CrossRefGoogle ScholarPubMed
Lau, A.W.C. & Sokoloff, J.B. 2024 Simple mechanism for the observed breakdown of the Nernst-Einstein relation for ions in carbon nanotubes. Phys. Rev. Lett. 132 (19), 194001.10.1103/PhysRevLett.132.194001CrossRefGoogle ScholarPubMed
Li, Z., Misra, R.P., Li, Y., Yao, Y.-C., Zhao, S., Zhang, Y., Chen, Y., Blankschtein, D. & Noy, A. 2023 Breakdown of the Nernst–Einstein relation in carbon nanotube porins. Nat. Nanotechnol. 18 (2), 177183.CrossRefGoogle ScholarPubMed
Lu, J., Luan, S., Guo, S., Duan, L., Du, G. & Xie, Y.. Angstrom-scale ionic streaming when electrical double-layer concept fails, arXiv:2501.00238.Google Scholar
Malakhov, A.N. 1997 Time scales of overdamped nonlinear Brownian motion in arbitrary potential profiles. Chaos: An Interdisciplinary J. Nonlinear Sci. 7 (3), 488504.10.1063/1.166220CrossRefGoogle ScholarPubMed
Marcotte, A., Mouterde, T., Niguès, A., Siria, A. & Bocquet, L. 2020 Mechanically activated ionic transport across single-digit carbon nanotubes. Nat. Mater. 19 (10), 10571061.10.1038/s41563-020-0726-4CrossRefGoogle ScholarPubMed
Monet, G., Bocquet, M.-L. & Bocquet, L. 2023 Unified non-equilibrium simulation methodology for flow through nanoporous carbon membrane. J. Chem. Phys. 159 (1), 014501.10.1063/5.0146628CrossRefGoogle ScholarPubMed
Mouterde, T., Keerthi, A., Poggioli, A.R., Dar, S.A., Siria, A., Geim, A.K., Bocquet, L. & Radha, B. 2019 Molecular streaming and its voltage control in ångström-scale channels. Nature 567 (7746), 8790.CrossRefGoogle ScholarPubMed
Oga, H., Yamaguchi, Y., Omori, T., Merabia, S. & Joly, L. 2019 Green-Kubo measurement of liquid-solid friction in finite-size systems. J. Chem. Phys. 151 (5), 054502.10.1063/1.5104335CrossRefGoogle Scholar
Parsegian, A. 1969 Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems. Nature 221 (5183), 844846.CrossRefGoogle Scholar
Rosenthal, J.S. 1995 Convergence rates for Markov chains. SIAM Rev. 37 (3), 387405.10.1137/1037083CrossRefGoogle Scholar
Secchi, E., Marbach, S., Niguès, A., Stein, D., Siria, A. & Bocquet, L. 2016 Massive radius-dependent flow slippage in carbon nanotubes. Nature 537 (7619), 210213.10.1038/nature19315CrossRefGoogle ScholarPubMed
Siria, A., Poncharal, P., Biance, A.-L., Fulcrand, R., Blase, X., Purcell, S.T. & Bocquet, L. 2013 Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 494 (7438), 455458.10.1038/nature11876CrossRefGoogle Scholar
Stein, D., Kruithof, M. & Dekker, C. 2004 Surface-Charge-Governed Ion Transport in Nanofluidic Channels. Phys. Rev. Lett. 93 (3), 035901.10.1103/PhysRevLett.93.035901CrossRefGoogle ScholarPubMed
Szamel, G. 2014 Self-propelled particle in an external potential: existence of an effective temperature. Phys. Rev. E 90 (1), 012111.CrossRefGoogle Scholar
Teber, S. 2005 Translocation energy of ions in nano-channels of cell membranes. J. Stat. Mech. Theory Exp. 2005 (07), P07001P07001.CrossRefGoogle Scholar
Thomas, J.A. & McGaughey, A.J.H. 2008 Density, distribution, and orientation of water molecules inside and outside carbon nanotubes. J. Chem. Phys. 128 (8), 084715.10.1063/1.2837297CrossRefGoogle ScholarPubMed
Thompson, A.P., 2022 LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171.CrossRefGoogle Scholar
Van Der, H., Frank, H.J., Stein, D. & Dekker, C. 2005 Streaming currents in a single nanofluidic channel. Phys. Rev. Lett. 95 (11), 116104.10.1103/PhysRevLett.95.116104CrossRefGoogle Scholar
Werder, T., Walther, J.H., Jaffe, R.L., Halicioglu, T. & Koumoutsakos, P. 2003 On the Water–Carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J. Phys. Chem. B 107 (6), 13451352.CrossRefGoogle Scholar
Xie, Y., Fu, L., Niehaus, T. & Joly, L. 2020 Liquid-solid slip on charged walls: the dramatic impact of charge distribution. Phys. Rev. Lett. 125 (1), 014501.CrossRefGoogle ScholarPubMed
Xie, Y., Shi, D., Wang, W. & Wang, Z. 2023 Surface-charge governed ionic blockade in angstrom-scale latent-track channels. Nanoscale 15 (21), 95609566.CrossRefGoogle ScholarPubMed
Xu, D., Yan, M. & Xie, Y. 2024 Energy harvesting from water streaming at charged surface. ELECTROPHORESIS 45 (3–4), 244265.10.1002/elps.202300102CrossRefGoogle ScholarPubMed
Yaroshchuk, A. & Luxbacher, T. 2010 Interpretation of electrokinetic measurements with porous films: role of electric conductance and streaming current within porous structure. Langmuir 26 (13), 1088210889.CrossRefGoogle ScholarPubMed
Yu, Y.Z., Fan, J.C., Xia, J., Zhu, Y.B., Wu, H.A. & Wang, F.C. 2019 Dehydration impeding ionic conductance through two-dimensional angstrom-scale slits. Nanoscale 11 (17), 84498457.10.1039/C9NR00317GCrossRefGoogle ScholarPubMed
Zhang, S., Fu, L. & Xie, Y. 2024 Counterion blockade in a heterogeneously charged single-file water channel. J. Phys. Chem. B 128 (38), 92069212.10.1021/acs.jpcb.4c03773CrossRefGoogle Scholar
Zhou, K. & Xu, Z. 2020 Nanoconfinement-enforced ion correlation and nanofluidic ion machinery. Nano Lett. 20 (11), 83928398.CrossRefGoogle ScholarPubMed
Zhou, W., Guo, Y., Zhang, Z., Guo, W. & Qiu, H. 2023 Field-induced hydration shell reorganization enables electro-osmotic flow in nanochannels. Phys. Rev. Lett. 130 (8), 084001.10.1103/PhysRevLett.130.084001CrossRefGoogle ScholarPubMed