Skip to main content
×
Home

Motion of a nano-spheroid in a cylindrical vessel flow: Brownian and hydrodynamic interactions

  • N. Ramakrishnan (a1), Y. Wang (a2), D. M. Eckmann (a1) (a3), P. S. Ayyaswamy (a2) and R. Radhakrishnan (a1) (a4) (a5)...
Abstract

We study the motion of a buoyant or a nearly neutrally buoyant nano-sized spheroid in a fluid filled tube without or with an imposed pressure gradient (weak Poiseuille flow). The fluctuating hydrodynamics approach and the deterministic method are both employed. We ensure that the fluctuation–dissipation relation and the principle of thermal equipartition of energy are both satisfied. The major focus is on the effect of the confining boundary. Results for the velocity and the angular velocity autocorrelations (VACF and AVACF), the diffusivities and the drag and the lift forces as functions of the shape, the aspect ratio, the inclination angle and the proximity to the wall are presented. For the parameters considered, the boundary modifies the VACF and AVACF such that three distinct regimes are discernible – an initial exponential decay followed by an algebraic decay culminating in a second exponential decay. The first is due to the thermal noise, the algebraic regime is due both to the thermal noise and the hydrodynamic correlations, while the second exponential decay shows the effect of momentum reflection from the confining wall. Our predictions display excellent comparison with published results for the algebraic regime (the only regime for which earlier results exist). We also discuss the role of the off-diagonal elements of the mobility and the diffusivity tensors that enable the quantifications of the degree of lift and margination of the nanocarrier. Our study covers a range of parameters that are of wide applicability in nanotechnology, microrheology and in targeted drug delivery.

Copyright
Corresponding author
Email address for correspondence: rradhak@seas.upenn.edu
Footnotes
Hide All

Present address: Center for Applied Mathematics, Tianjin University, Tianjin, China, 300072.

§

These authors contributed equally.

Footnotes
References
Hide All
Adhikari R., Stratford K., Cates M. E. & Wagner A. J. 2005 Fluctuating lattice Boltzmann. Eur. Phys. Lett. 71 (3), 473479.
Atzberger P. J. 2011 Journal of Computational Physics. J. Comput. Phys. 230 (8), 28212837.
Ayyaswamy P. S., Muzykantov V., Eckmann D. M. & Radhakrishnan R. 2013 Nanocarrier hydrodynamics and binding in targeted drug delivery: challenges in numerical modeling and experimental validation. J. Nanotechnol. Eng. Med. 4 (1), 011001.
Balakrishnan V. 2008 Elements of Nonequilibrium Statistical Mechanics. CRC Press.
Champion J. A. & Mitragotri S. 2006 Role of target geometry in phagocytosis. Proc. Natl Acad. Sci. USA 103 (13), 49304934.
Chou J. C. K. 1992 Quaternion kinematic and dynamic differential equations. IEEE Trans. Robotics Automation 8 (1), 5364.
Cichocki B. & Felderhof B. U. 1995 Long-time rotational motion of a rigid body immersed in a viscous fluid. Physica A 213 (4), 465473.
Cichocki B. & Felderhof B. U. 1996 Comment on ‘Long-time tails in angular momentum correlations’ [J. Chem. Phys. 103, 1582 (1995)]. J. Chem. Phys. 104 (18), 7363.
Cichocki B. & Felderhof B. U. 1997 Comment on ‘Long-time behavior of the angular velocity autocorrelation function’ [J. Chem. Phys. 105, 9695 (1996)]. J. Chem. Phys. 107 (1), 291.
Cicuta P. & Donald A. M. 2007 Microrheology: a review of the method and applications. Soft Matt. 3 (12), 1449.
Clift R. R., Grace J. R. & Weber M. E. 1978 Bubbles, Drops, and Particles. Academic.
Dasgupta S., Auth T. & Gompper G. 2013 Wrapping of ellipsoidal nano-particles by fluid membranes. Soft Matt. 9 (22), 5473.
Ding E. J. & Aidun C. K. 2000 The dynamics and scaling law for particles suspended in shear flow with inertia. J. Fluid Mech. 423 (0), 317344.
Donev A., Vanden-Eijnden E., Garcia A. & Bell J. 2010 On the accuracy of finite-volume schemes for fluctuating hydrodynamics. Commun. Appl. Maths Comput. Sci. 5 (2), 149197.
Dünweg B. & Ladd A. J. C. 2009 Lattice Boltzmann simulations of soft matter systems. In Advanced Computer Simulation Approaches for Soft Matter Sciences III (ed. Holm C. & Kremer K.), pp. 89166. Springer.
Español P., Anero J. G. & Zúñiga I. 2009 Microscopic derivation of discrete hydrodynamics. J. Chem. Phys. 131 (24), 244117.
George P. L. 1991 Automatic Mesh Generation: Application to Finite Element Methods. Wiley.
Glowinski R., Pan T. W., Hesla T. I., Joseph D. D. & Périaux J. 2001 A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J. Comput. Phys. 169 (2), 363426.
Gómez-González M. & del Álamo J. C. 2016 Two-point particle tracking microrheology of nematic complex fluids. Soft Matt. 12, 57585779.
Hauge E. H. & Martin-Löf A. 1973 Fluctuating hydrodynamics and Brownian motion. J. Stat. Phys. 7 (3), 259281.
Henry A. & Chen G. 2008 High thermal conductivity of single polyethylene chains using molecular dynamics simulations. Phys. Rev. Lett. 101 (2), 235502.
Hocquart R. & Hinch E. J. 1983 The long-time tail of the angular-velocity autocorrelation function for a rigid Brownian particle of arbitrary centrally symmetric shape. J. Fluid Mech. 137, 217220.
Hsu R. & Ganatos P. 1989 The motion of a rigid body in a viscous fluid bounded by a plane wall. J. Fluid Mech. 207, 2972.
Hu H. H., Patankar N. A. & Zhu M. Y. 2001 Direct numerical simulations of fluid–solid systems using the arbitrary Lagrangian–Eulerian technique. J. Comput. Phys. 169 (2), 427462.
Huang H., Yang X. & Lu X.-y. 2014 Sedimentation of an ellipsoidal particle in narrow tubes. Phys. Fluids 26 (5), 053302.
Iwashita T., Nakayama Y. & Yamamoto R. 2008 A numerical model for Brownian particles fluctuating in incompressible fluids. J. Phys. Soc. Japan (7), 074007.
Janjua M., Nudurupati S., Singh P. & Aubry N. 2011 Electric field-induced self-assembly of micro- and nanoparticles of various shapes at two-fluid interfaces. Electrophoresis 32 (5), 518526.
Koenig S. H. 1975 Brownian motion of an ellipsoid: a correction to Perrin’s results. Biopolymers 14, 24212423.
Korotkin A. I. 2008 Added Masses of Ship Structures, 1st edn. Springer.
Kubo R. 1966 The fluctuation-dissipation theorem. Rep. Prog. Phys. 29 (1), 255284.
Kuipers J. B. 1999 Quaternions and Rotation Sequences. Princeton University Press.
Ladd A. J. C. 1993 Short-time motion of colloidal particles: numerical simulation via a fluctuating lattice-Boltzmann equation. Phys. Rev. Lett. 70 (9), 13391342.
Ladd A. J. C. 1994a Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 271, 285309.
Ladd A. J. C. 1994b Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J. Fluid Mech. 271, 311339.
Landau L. D. & Lifshitz E. M. 1987 Fluid Mechanics, 2nd edn. Course of Theoretical Physics, vol. 6. Butterworth-Heinemann.
Leal G. L. 2007 Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Cambridge University Press.
Liu Y., Shah S. & Tan J. 2012 Computational modeling of nanoparticle targeted drug delivery. Rev. Nanosci. Nanotech. 1 (1), 6683.
Lowe C. P., Frenkel D. & Masters A. J. 1995 Long-time tails in angular-momentum correlations. J. Chem. Phys. 103 (4), 15821587.
Masters A. J. 1996 Long-time behavior of the angular velocity autocorrelation function. J. Chem. Phys. 105 (21), 96959697.
Masters A. J. 1997 Response to ‘Comment on “Long time behavior of the angular velocity autocorrelation function”’ [J. Chem. Phys. 107, 291 (1997)]. J. Chem. Phys. 107 (1), 292293.
Mazumdar J. 2015 Biofluid Mechanics. World Scientific.
Nie D. & Lin J. 2009 A fluctuating lattice-Boltzmann model for direct numerical simulation of particle Brownian motion. Particuology 7, 501506.
Onsager L. 1931a Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405426.
Onsager L. 1931b Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 22652279.
Ouchene R., Khalij M., Taniere A. & Arcen B. 2015 Drag, lift and torque coefficients for ellipsoidal particles: from low to moderate particle Reynolds numbers. Comput. Fluids 113, 5364.
Pagonabarraga I., Hagen M. H. J., Lowe C. P. & Frenkel D. 1998 Algebraic decay of velocity fluctuations near a wall. Phys. Rev. E 58 (6), 72887295.
Patankar N. A. 2002 Direct numerical simulation of moving charged, flexible bodies with thermal fluctuations. In Technical Proceedings of the 2002 International Conference on Modeling and Simulation of Microsystems, pp. 3235; ISBN-10: 0970827571; ISBN-13: 978-0970827579.
Perrin F. 1934 Mouvement brownien d’un ellipsoide – I. Dispersion diélectrique pour des molécules ellipsoidales. J. Phys. Radium 5 (10), 497511.
Perrin F. 1936 Mouvement Brownien d’un ellipsoide (II). Rotation libre et dépolarisation des fluorescences. Translation et diffusion de molécules ellipsoidales. J. Phys. Radium 7 (1), 111.
Radhakrishnan R., Yu H.-Y., Eckmann D. M. & Ayyaswamy P. S. 2017 Computational models for nanoscale fluid dynamics and transport inspired by nonequilibrium thermodynamics 1. Trans. ASME J. Heat Transfer 139 (3), 033001.
Shah S., Liu Y., Hu W. & Gao J. 2011 Modeling particle shape-dependent dynamics in nanomedicine. J. Nanosci. Nanotech. 11 (2), 919928.
Sharma N. & Patankar N. A. 2004 Direct numerical simulation of the Brownian motion of particles by using fluctuating hydrodynamic equations. J. Comput. Phys. 201, 466486.
Squires T. M. & Mason T. G. 2010a Fluid mechanics of microrheology. Annu. Rev. Fluid Mech. 42 (1), 413438.
Squires T. M. & Mason T. G. 2010b Tensorial generalized Stokes–Einstein relation for anisotropic probe microrheology. Rheol. Acta 49, 11651177.
Sugihara-Seki M. 1996 The motion of an ellipsoid in tube flow at low Reynolds number. J. Fluid Mech. 324, 287308.
Swaminathan T. N., Mukundakrishnan K. & Hu H. H. 2006 Sedimentation of an ellipsoid inside an infinitely long tube at low and intermediate Reynolds numbers. J. Fluid Mech. 551, 357385.
Uma B., Swaminathan T. N., Radhakrishnan R., Eckmann D. M. & Ayyaswamy P. S. 2011 Nanoparticle Brownian motion and hydrodynamic interactions in the presence of flow fields. Phys. Fluids 23 (7), 073602.
Vitoshkin H., Yu H.-Y., Eckmann D. M., Ayyaswamy P. S. & Radhakrishnan R. 2016 Nanoparticle stochastic motion in the inertial regime and hydrodynamic interactions close to a cylindrical wall. Phys. Rev. Fluids 1 (5), 054104.
Waigh T. A. 2005 Microrheology of complex fluids. Rep. Prog. Phys. 68 (3), 685742.
Wakiya S. 1957 Viscous flows past a spheroid. J. Phys. Soc. Japan 12 (1), 11301141.
Xia Z., Connington K. W., Rapaka S., Yue P., Feng J. J. & Chen S. 2009 Flow patterns in the sedimentation of an elliptical particle. J. Fluid Mech. 625, 249.
Xu Q. & Michaelides E. E. 1996 A numerical study of the flow over ellipsoidal objects inside a cylindrical tube. Intl J. Numer. Meth. Fluids 22 (1), 10751088.
Yu H.-Y., Eckmann D. M., Ayyaswamy P. S. & Radhakrishnan R. 2015 Composite generalized Langevin equation for Brownian motion in different hydrodynamic and adhesion regimes. Phys. Rev. E 91 (5), 052303.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Type Description Title
UNKNOWN
Supplementary Materials

Ramakrishnan supplementary material
Ramakrishnan supplementary material

 Unknown (8.0 MB)
8.0 MB

Metrics

Full text views

Total number of HTML views: 8
Total number of PDF views: 141 *
Loading metrics...

Abstract views

Total abstract views: 263 *
Loading metrics...

* Views captured on Cambridge Core between 18th May 2017 - 23rd November 2017. This data will be updated every 24 hours.