Skip to main content
    • Aa
    • Aa

The motion of a viscous drop sliding down a Hele-Shaw cell

  • Kalvis M. Jansons (a1)

The motion of a viscous drop in a vertical Hele-Shaw cell is studied in a limit where the effect of surface tension through contact-angle hysteresis is significant. It is found that a rectangular drop shape is a possible steady solution of the governing equations, although this solution is unstable to perturbations on the leading edge. Even though the unstable edge is one where a viscous fluid is moving into a less viscous fluid, in this case air, this is shown to be a special case of the well-known Saffman—Taylor instability. An experiment is performed with an initially circular drop in which it is observed that the drop shape becomes approximately rectangular except at the leading edge, where it becomes rounded and sometimes has a ragged appearance.

A drop sliding down a vertical Hele-Shaw cell is an example of a system where the action of surface tension is not always one of smoothing, since in this case it leads to the formation of right-angle corners at the back of the drop (rounded only slightly on the lengthscale of the gap thickness of the cell).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 7 *
Loading metrics...

Abstract views

Total abstract views: 85 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st September 2017. This data will be updated every 24 hours.