Skip to main content

Motion of red blood cells near microvessel walls: effects of a porous wall layer

  • Daniel S. Hariprasad (a1) and Timothy W. Secomb (a2)

A two-dimensional model is used to simulate the motion and deformation of a single mammalian red blood cell (RBC) flowing close to the wall of a microvessel, taking into account the effects of a porous endothelial surface layer (ESL) lining the vessel wall. Migration of RBCs away from the wall leads to the formation of a cell-depleted layer near the wall, which has a large effect on the resistance to blood flow in microvessels. The objective is to examine the mechanical factors causing this migration, including the effects of the ESL. The vessel is represented as a straight parallel-sided channel. The RBC is represented as a set of interconnected viscoelastic elements, suspended in plasma, a Newtonian fluid. The ESL is represented as a porous medium, and plasma flow in the layer is computed using the Brinkman approximation. It is shown that an initially circular cell positioned close to the ESL in a shear flow is deformed into an asymmetric shape. This breaking of symmetry leads to migration away from the wall. With increasing hydraulic resistivity of the layer, the rate of lateral migration increases. It is concluded that mechanical interactions of RBCs flowing in microvessels with a porous wall layer may reduce the rate of lateral migration and hence reduce the width of the cell-depleted zone external to the ESL, relative to the cell-depleted zone that would be formed if the interface between the ESL and free-flowing plasma were replaced by an impermeable boundary.

Corresponding author
Email address for correspondence:
Hide All
1. Barber, J. O., Alberding, J. P., Restrepo, J. M. & Secomb, T. W. 2008 Simulated two-dimensional red blood cell motion, deformation, and partitioning in microvessel bifurcations. Ann. Biomed. Engng 36, 16901698.
2. Beaucourt, J., Biben, T. & Misbah, C. 2004 Optimal lift force on vesicles near a compressible substrate. Europhys. Lett. 67, 676682.
3. Brinkman, H. C. 1947 A Calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A 1, 2734.
4. Cameron, A. 1966 The Principles of Lubrication. Wiley.
5. Cantat, I. & Misbah, C. 1999 Lift force and dynamical unbinding of adhering vesicles under shear flow. Phys. Rev. Lett. 83, 880883.
6. Coupier, G., Kaoui, B., Podgorski, T. & Misbah, C. 2008 Noninertial lateral migration of vesicles in bounded Poiseuille flow. Phys. Fluids 20.
7. Doddi, S. K. & Bagchi, P. 2009 Three-dimensional computational modeling of multiple deformable cells flowing in microvessels. Phys. Rev. E 79, 046318.
8. Dupin, M. M., Halliday, I., Care, C. M., Alboul, L. & Munn, L. L. 2007 Modeling the flow of dense suspensions of deformable particles in three dimensions. Phys. Rev. E 75, 066707.
9. Evans, E. A. 1983 Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests. Biophys. J. 43, 2730.
10. Fåhraeus, R. & Lindqvist, T. 1931 The viscosity of the blood in narrow capillary tubes. Am. J. Physiol. 96, 562568.
11. Fedosov, D. A., Caswell, B., Popel, A. S. & Karniadakis, G. E. 2010 Blood flow and cell-free layer in microvessels. Microcirculation 17, 615628.
12. Fischer, T. M. 1980 On the energy dissipation in a tank-treading human red blood cell. Biophys. J. 32, 863868.
13. Fischer, T. M. 2004 Shape memory of human red blood cells. Biophys. J. 86, 33043313.
14. Fischer, T. M., Stohr, M. & Schmid-Schönbein, H. 1978 Red blood cell (rbc) microrheology: Comparison of the behaviour of single rbc and liquid droplets in shear flow. In Biorheology (ed. Huang, C.-R. & Copley, A. L. ). AIChE Symposium Series No. 182, vol. 74 , pp. 3845. American Institute of Chemical Engineers.
15. Freund, J. B. 2007 Leukocyte margination in a model microvessel. Phys. Fluids 19, 023301.
16. Goldsmith, H. L. 1971 Red cell motions and wall interactions in tube flow. Fed. Proc. 30, 15781590.
17. Hochmuth, R. M. & Waugh, R. E. 1987 Erythrocyte membrane elasticity and viscosity. Annu. Rev. Physiol 49, 209219.
18. Hsu, R. & Secomb, T. W. 1989 Motion of nonaxisymmetric red blood cells in cylindrical capillaries. Trans. ASME: J. Biomech. Engng 111, 147151.
19. Kaoui, B., Biros, G. & Misbah, C. 2009 Why do red blood cells have asymmetric shapes even in a symmetric flow? Phys. Rev. Lett. 103, 188101.
20. Kaoui, B., Ristow, G. H., Cantat, I., Misbah, C. & Zimmermann, W. 2008 Lateral migration of a two-dimensional vesicle in unbounded Poiseuille flow. Phys. Rev. E 77, 111702.
21. Leighton, D. & Acrivos, A. 1987 The shear-induced migration of particles in concentrated suspensions. J. Fluid Mech. 181, 415439.
22. Maeda, N., Suzuki, Y., Tanaka, S. & Tateishi, N. 1996 Erythrocyte flow and elasticity of microvessels evaluated by marginal cell-free layer and flow resistance. Am. J. Physiol. Heart Circ. Physiol. 271, H2454H2461.
23. McWhirter, J. L., Noguchi, H. & Gompper, G. 2009 Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries. Proc. Natl Acad. Sci. USA 106, 60396043.
24. Olla, P. 1997 The role of tank-treading motions in the transverse migration of a spheroidal vesicle in a shear flow. J. Phys. A: Math. Gen. 30, 317329.
25. Pan, W. X., Caswell, B. & Karniadakis, G. E. 2010 A low-dimensional model for the red blood cell. Soft Matt. 6, 43664376.
26. Pivkin, I. V. & Karniadakis, G. E. 2008 Accurate coarse-grained modeling of red blood cells. Phys. Rev. Lett. 101, 118105.
27. Poiseuille, J. L. M. 1835 Recherches sur les causes du mouvement du sang dans les vaisseaux capillaires. C. R. Acad. Sci. 6, 554560.
28. Poiseuille, J. L. M. 1846 Recherches expérimentales sur le mouvement des liquides dans les tubes de très-petits diamêtres. Mém. Preséntés par Divers Savants Acad. Sci. Inst. Fr. IX, 433544.
29. Pozrikidis, C. 2005 Numerical simulation of cell motion in tube flow. Ann. Biomed. Engng 33, 165178.
30. Pries, A. R., Neuhaus, D. & Gaehtgens, P. 1992 Blood viscosity in tube flow: dependence on diameter and hematocrit. Am. J. Physiol. 263, H1770H1778.
31. Pries, A. R. & Secomb, T. W. 2008 Modeling structural adaptation of microcirculation. Microcirculation 15, 753764.
32. Pries, A. R., Secomb, T. W. & Gaehtgens, P. 1996 Biophysical aspects of blood flow in the microvasculature. Cardiovasc. Res. 32, 654667.
33. Pries, A. R., Secomb, T. W. & Gaehtgens, P. 2000 The endothelial surface layer. Pflugers Arch. 440, 653666.
34. Pries, A. R., Secomb, T. W., Gessner, T., Sperandio, M. B., Gross, J. F. & Gaehtgens, P. 1994 Resistance to blood flow in microvessels in vivo. Circulat. Res. 75, 904915.
35. Pries, A. R., Secomb, T. W., Sperandio, M. & Gaehtgens, P. 1998 Blood flow resistance during hemodilution: effect of plasma composition. Cardiovasc. Res. 37, 225235.
36. Secomb, T. W. 1995 Mechanics of blood flow in the microcirculation. Symp. Soc. Exp. Biol. 49, 305321.
37. Secomb, T. W. 2003 Mechanics of red blood cells and blood flow in narrow tubes. In Hydrodynamics of Capsules and Cells (ed. Pozrikidis, C. ), pp. 163196. Chapman & Hall/CRC.
38. Secomb, T. W. 2010 Mechanics and computational simulation of blood flow in microvessels. Med. Engng Phys., 33, 800804.
39. Secomb, T. W. & Hsu, R. 1993 Non-axisymmetrical motion of rigid closely fitting particles in fluid-filled tubes. J. Fluid Mech. 257, 403420.
40. Secomb, T. W., Hsu, R. & Pries, A. R. 1998 A model for red blood cell motion in glycocalyx-lined capillaries. Am. J. Physiol. 274, H1016H1022.
41. Secomb, T. W., Hsu, R. & Pries, A. R. 2001 Effect of the endothelial surface layer on transmission of fluid shear stress to endothelial cells. Biorheology 38, 143150.
42. Secomb, T. W., Hsu, R. & Pries, A. R. 2002 Blood flow and red blood cell deformation in nonuniform capillaries: effects of the endothelial surface layer. Microcirculation 9, 189196.
43. Secomb, T. W. & Skalak, R. 1982 A two-dimensional model for capillary flow of an asymmetric cell. Microvasc. Res. 24, 194203.
44. Secomb, T. W., Skalak, R., Özkaya, N. & Gross, J. F. 1986 Flow of axisymmetric red blood cells in narrow capillaries. J. Fluid Mech. 163, 405423.
45. Secomb, T. W., Styp-Rekowska, B. & Pries, A. R. 2007 Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels. Ann. Biomed. Engng 35, 755765.
46. Seifert, U. 1999 Hydrodynamic lift on bound vesicles. Phys. Rev. Lett. 83, 876879.
47. Skotheim, J. M. & Mahadevan, L. 2005 Soft lubrication: the elastohydrodynamics of nonconforming and conforming contacts. Phys. Fluids 17, 092101.
48. Sukumaran, S. & Seifert, U. 2001 Influence of shear flow on vesicles near a wall: a numerical study. Phys. Rev. E 64.
49. Vand, V. 1948 Viscosity of solutions and suspensions. I. Theory. J. Phys. Colloid Chem. 52, 277299.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification

Type Description Title

Hariprasad and Secomb supplementary movie
See pdf file for caption

 Video (6.1 MB)
6.1 MB

Hariprasad and Secomb supplementary movie
See pdf file for caption

 Video (623 KB)
623 KB

Hariprasad and Secomb supplementary movie
See pdf file for caption

 Video (6.7 MB)
6.7 MB

Hariprasad and Secomb supplementary movie
See pdf file for caption

 Video (620 KB)
620 KB

Hariprasad and Secomb supplementary movie
See pdf file for caption

 Video (611 KB)
611 KB

Hariprasad and Secomb supplementary movie
See pdf file for caption

 Video (5.9 MB)
5.9 MB

Hariprasad and Secomb supplementary movie
See pdf file for caption

 Video (6.8 MB)
6.8 MB
Supplementary materials

Hariprasad and Secomb supplementary captions
Captions for movies 1-4

 PDF (128 KB)
128 KB

Hariprasad and Secomb supplementary movie
See pdf file for caption

 Video (652 KB)
652 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed