Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 21
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Gray, John Mark Nicholas Timm Gajjar, Parmesh and Kokelaar, Peter 2015. Particle-size segregation in dense granular avalanches. Comptes Rendus Physique, Vol. 16, Issue. 1, p. 73.


    Combarros Garcia, M. Feise, H.J. Strege, S. and Kwade, A. 2016. Segregation in heaps and silos: Comparison between experiment, simulation and continuum model. Powder Technology, Vol. 293, p. 26.


    Liao, Chun-Chung 2016. Multisized immersed granular materials and bumpy base on the Brazil nut effect in a three-dimensional vertically vibrating granular bed. Powder Technology, Vol. 288, p. 151.


    Hill, K. M. and Tan, Danielle S. 2014. Segregation in dense sheared flows: gravity, temperature gradients, and stress partitioning. Journal of Fluid Mechanics, Vol. 756, p. 54.


    Hill, Kimberly M. and Fan, Yi 2016. Granular Temperature and Segregation in Dense Sheared Particulate Mixtures. KONA Powder and Particle Journal, Vol. 33, p. 150.


    Yang, Qingqing Su, Zhiman Cai, Fei and Ugai, Keizo 2015. Enhanced mobility of polydisperse granular flows in a small flume. Geoenvironmental Disasters, Vol. 2, Issue. 1,


    Pereira, G. G. and Cleary, P. W. 2013. Radial segregation of multi-component granular media in a rotating tumbler. Granular Matter, Vol. 15, Issue. 6, p. 705.


    Larcher, Michele and Jenkins, James T. 2013. Segregation and mixture profiles in dense, inclined flows of two types of spheres. Physics of Fluids, Vol. 25, Issue. 11, p. 113301.


    Stecca, G. Siviglia, A. and Blom, A. 2014. Mathematical analysis of the Saint-Venant-Hirano model for mixed-sediment morphodynamics. Water Resources Research, Vol. 50, Issue. 10, p. 7563.


    Zhou, Gordon G. D. Ng, Charles W. W. and Sun, Q. C. 2014. A new theoretical method for analyzing confined dry granular flows. Landslides, Vol. 11, Issue. 3, p. 369.


    Staron, L. 2012. Friction and the oscillatory motion of granular flows. Physical Review E, Vol. 86, Issue. 4,


    Starheim, Colette C.A. Gomez, Christopher Harrison, Justin Kain, Claire Brewer, Nicholas J. Owen, Kirsty Hadmoko, Danang Sri Purdie, Heather Zawar-Reza, Peyman Owens, Ian Wassmer, Patrick and Lavigne, Franck 2013. Complex internal architecture of a debris-flow deposit revealed using ground-penetrating radar, Cass, New Zealand. New Zealand Geographer, Vol. 69, Issue. 1, p. 26.


    Mahapatra, Pallab Sinha Mathew, Sam Panchagnula, Mahesh V. and Vedantam, Srikanth 2016. Effect of size distribution on mixing of a polydisperse wet granular material in a belt-driven enclosure. Granular Matter, Vol. 18, Issue. 2,


    Pastor, M. Blanc, T. Haddad, B. Drempetic, V. Morles, Mila Sanchez Dutto, P. Stickle, M. Martin Mira, P. and Merodo, J. A. Fernández 2015. Depth Averaged Models for Fast Landslide Propagation: Mathematical, Rheological and Numerical Aspects. Archives of Computational Methods in Engineering, Vol. 22, Issue. 1, p. 67.


    Pastor, M. Blanc, T. Haddad, B. Petrone, S. Sanchez Morles, M. Drempetic, V. Issler, D. Crosta, G. B. Cascini, L. Sorbino, G. and Cuomo, S. 2014. Application of a SPH depth-integrated model to landslide run-out analysis. Landslides, Vol. 11, Issue. 5, p. 793.


    Forien, Mélanie Tremblay, Jonathan Barnes, Sarah-Jane Burgisser, Alain and Pagé, Philippe 2015. The Role of Viscous Particle Segregation in Forming Chromite Layers from Slumped Crystal Slurries: Insights from Analogue Experiments. Journal of Petrology, Vol. 56, Issue. 12, p. 2425.


    THORNTON, ANTHONY WEINHART, THOMAS LUDING, STEFAN and BOKHOVE, ONNO 2012. MODELING OF PARTICLE SIZE SEGREGATION: CALIBRATION USING THE DISCRETE PARTICLE METHOD. International Journal of Modern Physics C, Vol. 23, Issue. 08, p. 1240014.


    Shimokawa, Michiko Suetsugu, Yuki Hiroshige, Ryoma Hirano, Takeru and Sakaguchi, Hidetsugu 2015. Pattern formation in a sandpile of ternary granular mixtures. Physical Review E, Vol. 91, Issue. 6,


    Pastor, M. Martin Stickle, M. Dutto, P. Mira, P. Fernández Merodo, J. A. Blanc, T. Sancho, S. and Benítez, A. S. 2015. A viscoplastic approach to the behaviour of fluidized geomaterials with application to fast landslides. Continuum Mechanics and Thermodynamics, Vol. 27, Issue. 1-2, p. 21.


    Johnson, C. G. Kokelaar, B. P. Iverson, R. M. Logan, M. LaHusen, R. G. and Gray, J. M. N. T. 2012. Grain-size segregation and levee formation in geophysical mass flows. Journal of Geophysical Research: Earth Surface, Vol. 117, Issue. F1, p. n/a.


    ×
  • Journal of Fluid Mechanics, Volume 678
  • July 2011, pp. 535-588

Multi-component particle-size segregation in shallow granular avalanches

  • J. M. N. T. GRAY (a1) and C. ANCEY (a2)
  • DOI: http://dx.doi.org/10.1017/jfm.2011.138
  • Published online: 01 June 2011
Abstract

A general continuum theory for particle-size segregation and diffusive remixing in polydisperse granular avalanches is formulated using mixture theory. Comparisons are drawn to existing segregation theories for bi-disperse mixtures and the case of a ternary mixture of large, medium and small particles is investigated. In this case, the general theory reduces to a system of two coupled parabolic segregation–remixing equations, which have a single diffusion coefficient and three parameters which control the segregation rates between each pair of constituents. Considerable insight into many problems where the effect of diffusive remixing is small is provided by the non-diffusive case. Here the equations reduce to a system of two first-order conservation laws, whose wave speeds are real for a very wide class of segregation parameters. In this regime, the system is guaranteed to be non-strictly hyperbolic for all admissible concentrations. If the segregation rates do not increase monotonically with the grain-size ratio, it is possible to enter another region of parameter space, where the equations may either be hyperbolic or elliptic, depending on the segregation rates and the local particle concentrations. Even if the solution is initially hyperbolic everywhere, regions of ellipticity may develop during the evolution of the problem. Such regions in a time-dependent problem necessarily lead to short wavelength Hadamard instability and ill-posedness. A linear stability analysis is used to show that the diffusive remixing terms are sufficient to regularize the theory and prevent unbounded growth rates at high wave numbers. Numerical solutions for the time-dependent segregation of an initially almost homogeneously mixed state are performed using a standard Galerkin finite element method. The diffuse solutions may be linearly stable or unstable, depending on the initial concentrations. In the linearly unstable region, ‘sawtooth’ concentration stripes form that trap and focus the medium-sized grains. The large and small particles still percolate through the avalanche and separate out at the surface and base of the flow due to the no-flux boundary conditions. As these regions grow, the unstable striped region is annihilated. The theory is used to investigate inverse distribution grading and reverse coarse-tail grading in multi-component mixtures. These terms are commonly used by geologists to describe particle-size distributions in which either the whole grain-size population coarsens upwards, or just the coarsest clasts are inversely graded and a fine-grained matrix is found everywhere. An exact solution is constructed for the steady segregation of a ternary mixture as it flows down an inclined slope from an initially homogeneously mixed inflow. It shows that for distribution grading, the particles segregate out into three inversely graded sharply segregated layers sufficiently far downstream, with the largest particles on top, the fines at the bottom and the medium-sized grains sandwiched in between. The heights of the layers are strongly influenced by the downstream velocity profile, with layers becoming thinner in the faster moving near-surface regions of the avalanche, and thicker in the slowly moving basal layers, for the same mass flux. Conditions for the existence of the solution are discussed and a simple and useful upper bound is derived for the distance at which all the particles completely segregate. When the effects of diffusive remixing are included, the sharp concentration discontinuities are smoothed out, but the simple shock solutions capture many features of the evolving size distribution for typical diffusive remixing rates. The theory is also used to construct a simple model for reverse coarse-tail grading, in which the fine-grained material does not segregate. The numerical method is used to calculate diffuse solutions for a ternary mixture and a sharply segregated shock solution is derived that looks similar to the segregation of a bi-disperse mixture of large and medium grains. The presence of the fine-grained material, however, prevents high concentrations of large or medium particles being achieved and there is a significant lengthening of the segregation distance.

Copyright
Corresponding author
Email address for correspondence: nico.gray@manchester.ac.uk
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

R. A. Bagnold 1954 Experiments on gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. Lond. A 225, 4963.

P. Bartelt & B. W. McArdell 2009 Granulometric investigations of snow avalanches. J. Glaciol. 55 (193), 829833.

J. Baxter , U. Tüzün , D. Heyes , I. Hayati & P. Fredlund 1998 Stratification in poured granular heaps. Nature 391, 136.

P. Bertran 2003 The rock-avalanche of February 1995 at Claix (French Alps). Geomorphology 54, 339346.

M. J. Branney & B. P. Kokelaar 1992 A reappraisal of ignimbrite emplacement: progressive aggradation and changes from particulate to non-particulate flow during emplacement of high-grade ignimbrite. Bull. Volcanol. 54, 504520.

J. Bridgwater 1976 Fundamental powder mixing mechanisms. Powder Technol. 15, 215236.

B. Cagnoli & M. Manga 2005 Vertical segregation in granular mass flows: A shear cell study. Geophys. Res. Lett. 32, L10402.

B. Cagnoli & G. P. Romano 2010 Effect of grain size on mobility of dry granular flows of angular rock fragments: An experimental determination. J. Volcanol. Geotherm. Res. 193 (1–2), 1824.

E. S. Calder , R. S. J. Sparks & M. C. Gardeweg 2000 Erosion, transport and segregation of pumice and lithic clasts in pyroclastic flows inferred from ignimbrite at Lascar Volcano, Chile. J. Volcanol. Geotherm. Res. 104, 201235.

R. A. Cas & J. V. Wright 1987 Volcanic Successions. Allen & Unwin.

W. B. Dade & H. E. Huppert 1998 Long-runout rockfalls. Geology 26, 803806.

V. N. Dolgunin & A. A. Ukolov 1995 Segregation modelling of particle rapid gravity flow. Powder Technol. 83, 95103.

J. A. Drahun & J. Bridgwater 1983 The mechanisms of free surface segregation. Powder Technol. 36, 3953.

E. E. Ehrichs , H. M. Jaeger , G. S. Karczmar , J. B. Knight , V. Y. Kuperman & S. R. Nagel 1995 Granular convection observed by magnetic-resonance-imaging. Science 267, 16321634.

G. Félix & N. Thomas 2004 Relation between dry granular flow regimes and morphology of deposits: formation of levées in pyroclastic deposits. Earth Planet. Sci. Lett. 221, 197213.

J. D. Goddard 2003 Material instability in complex fluids. Annu. Rev. Fluid Mech. 35, 113133.

L. A. Golick & K. E. Daniels 2009 Mixing and segregation rates in sheared granular materials. Phys. Rev. E 80 (4), 042301.

C. Goujon , B. Dalloz-Dubrujeaud & N. Thomas 2007 Bidisperse granular avalanches on inclined planes: A rich variety of behaviours. Eur. Phys. J. E 23, 199215.

J. M. N. T. Gray 1999 Loss of hyperbolicity and ill-posedness of the viscous-plastic sea ice rheology in uniaxial divergent flow. J. Phys. Oceanogr. 29 (11), 29202929.



J. M. N. T. Gray & K. Hutter 1997 Pattern formation in granular avalanches. Contin. Mech. Thermodyn. 9, 341345.

J. M. N. T. Gray , M. Shearer & A. R. Thornton 2006 Time-dependent solutions for particle-size segregation in shallow granular avalanches. Proc. R. Soc. Lond. A 462, 947972.


J. M. N. T. Gray & A. R. Thornton 2005 A theory for particle size segregation in shallow granular free-surface flows. Proc. R. Soc. Lond. A 461, 14471473.

J. M. N. T. Gray , M. Wieland & K. Hutter 1999 Free surface flow of cohesionless granular avalanches over complex basal topography. Proc. R. Soc. Lond. A 455, 18411874.

U. Gruber & P. Bartelt 2007 Snow avalanche hazard modelling of large areas using shallow water numerical methods and GIS. Environ. Model. Softw. 22 (10), 14721481.

H. J. Herrmann , G. Mantica & D. Bessis 1990 Space-filling bearings. Phys. Rev. Lett. 65 (26), 32233226.

K. M. Hill , G. Gioia & D. Amaravadi 2004 Radial segregation patterns in rotating granular mixtures: Waviness selection. Phys. Rev. Lett. 93, 224301.

K. M. Hill & J. Kakalios 1995 Reversible axial segregation of rotating granular media. Phys. Rev. E 52 (4), 43934400.

K. M. Hill , D. V. Kharkar , J. F. Gilchrist , J. J. McCarthy & J. M. Ottino 1999 Segregation driven organization in chaotic granular flows. Proc. Natl Acad. Sci. USA 96, 1170111706.

E. Hopf 1950 The partial differential equation ut + uux = μuxx. Commun. Pure Appl. Math. 3, 201230.

R. M. Iverson 1997 The physics of debris-flows. Rev. Geophy. 35, 245296.

R. M. Iverson & R. P. Denlinger 2001 Flow of variably fluidized granular masses across three-dimensional terrain. 1. Coulomb mixture theory. J. Geophys. Res. 106 (B1), 553566.

R. M. Iverson , M. Logan , R. G. LaHusen & M. Berti 2010 The perfect debris flow? aggregated results from 28 large-scale experiments. J. Geophys. Res. 115, F03005.

R. M. Iverson & J. W. Vallance 2001 New views of granular mass flows. Geology 29 (2), 115118.

A. K. Jha & V. M. Puri 2010 Percolation segregation of multi-size and multi-component particulate materials. Powder Technol. 197 (3), 274282.

V. Jomelli & P. Bertran 2001 Wet snow avalanche deposits in the French Alps: Structure and sedimentology. Geografiska Annaler. A Phys. Geog. 83, 1528.

D. D. Joseph & J. C. Saut 1990 Short-wave instabilities and ill-posed initial-value problems. Theor. Comput. Fluid Dyn. 1, 191227.

D. V. Khakhar , J. J. McCarthy & J. M. Ottino 1997 Radial segregation of granular mixtures in rotating cylinders. Phys. Fluids 9, 36003614.

D. V. Khakhar , J. J. McCarthy & J. M. Ottino 1999 Mixing and segregation of granular materials in chute flows. Chaos 9, 594610.

G. J. Kynch 1952 A theory of sedimentation. Trans. Faraday Soc. 48, 166176.

P. D. Lax 1957 Hyperbolic systems of conservation laws 2. Commun. Pure Appl. Maths 10 (4), 537566.

H. A. Makse , S. Havlin , P. R. King & H. E. Stanley 1997 Spontaneous stratification in granular mixtures. Nature 386, 379382.

A. Mangeney , F. Bouchut , N. Thomas , J. P. Vilotte & M. O. Bristeau 2007 Numerical modeling of self-channeling granular flows and of their levee-channel deposits. J. Geophys. Res. 112, F02017.

L. B. H. May , L. A. Golick , K. C. Phillips , M. Shearer & K. E. Daniels 2010 Shear-driven size segregation of granular materials: Modeling and experiment. Phys. Rev. E 81 (5), 051301.

J. J. McCarthy 2009 Turning the corner in segregation. Powder Technol. 192 (2), 137142.

L. W. Morland 1992 Flow of viscous fluids through a porous deformable matrix. Surv. Geophys. 13, 209268.

M. Newey , J. Ozik , S. M. Van der Meer , E. Ott & W. Losert 2004 Band-in-band segregation of multidisperse granular mixtures. Eur. Phys. Lett. 66 (2), 205.

D. M. Palladino & G. A. Valentine 1995 Coarse-tail vertical and lateral grading in pyroclastic flow deposits of the Latera Volcanic Complex (Vulsini, Central Italy): origin and implications for flow dynamics. J. Volcanol. Geotherm. Res. 69 (3–4), 343364.

J. C. Phillips , A. J. Hogg , R. R. Kerswell & N. H. Thomas 2006 Enhanced mobility of granular mixtures of fine and coarse particles. Earth Planet. Sci. Lett. 246, 466480.

E. B. Pitman , C. C. Nichita , A. Patra , A. Bauer , M. Sheridan & M. Bursik 2003 Computing granular avalanches and landslides. Phys. Fluids 15 (12), 36383646.

O. Pouliquen 1999 bOn the shape of granular fronts down rough inclined planes. Phys. Fluids 11 (7), 19561958.

O. Pouliquen , J. Delour & S. B. Savage 1997 Fingering in granular flows. Nature 386, 816817.

O. Pouliquen & J. W. Vallance 1999 Segregation induced instabilities of granular fronts. Chaos 9 (3), 621630.

P. G. Rognon , J. N. Roux , M. Naaim & F. Chevoir 2007 Dense flows of bidisperse assemblies of disks down an inclined plane. Phys. Fluids 19, 058101.

A. Rosato , K. J. Strandburg , F. Prinz & R. H. Swendsen 1987 Why the Brazil nuts are on top: Size segregation of particulate matter by shaking. Phys. Rev. Lett. 58 (10), 10381040.



M. Schröter , S. Ulrich , J. Kreft , J. B. Swift & H. L. Swinney 2006 Mechanisms in the size segregation of a binary granular mixture. Phys. Rev. E 74 (1), 011307.

A. M. Scott & J. Bridgwater 1975 Interparticle percolation: A fundamental solids mixing mechanism. Ind. Engng Chem. Fundam. 14 (1), 2227.

M. Shearer & C. Dafermos 2010 Finite time emergence of a shock wave for scalar conservation laws. J. Hyperbolic Differ. Equ. 7 (1), 107116.

M. Shearer & N. Giffen 2010 Shock formation and breaking in granular avalanches. Discr. Contin. Dyn. Sys. 27 (2, Special Issue), 693714.

T. Shinbrot & F. J. Muzzio 1998 Reverse buoyancy in shaken granular beds. Phys. Rev. Lett. 81 (20), 43654368.

R. D. Skeel & M. Berzins 1990 A method for the spatial discretization of parabolic equations in one space variable. SIAM J. Sci. Stat. Comput. 11 (1), 132.



C. Truesdell 1984 Rational Thermodynamics. Springer.

J. W. Vallance & S. B. Savage 2000 Particle segregation in granular flows down chutes. In IUTAM Symposium on Segregation in Granular Materials (ed. A. D. Rosato & D. L. Blackmore ), pp. 3151. Kluwer.

S. Wiederseiner , N. Andreini , G. Epely-Chauvin , G. Moser , M. Monnereau , J. M. N. T. Gray & C. Ancey 2011 Experimental investigation into segregating granular flows down chutes. Phys. Fluids 23, 013301.

S. C. Williams 1968 The mixing of dry powders. Powder Technol. 2, 1320.

B. Zanuttigh & A. Di Paolo 2006 Experimental analysis of the segregation of dry avalanches and implications for debris flows. J. Hydraul. Res. 44 (6), 796806.

B. Zanuttigh & P. Ghilardi 2010 Segregation process of water-granular mixtures released down a steep chute. J. Hydrol. 391 (1–2), 175187.

I. Zuriguel , J. M. N. T. Gray , J. Peixinho & T. Mullin 2006 Pattern selection by a granular wave in a rotating drum. Phys. Rev. E 73, 061302.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords: