Skip to main content
×
Home

Multi-branching three-dimensional flow with substantial changes in vessel shapes

  • R. I. BOWLES (a1), N. C. OVENDEN (a1) and F. T. SMITH (a1)
Abstract

This theoretical investigation of steady fluid flow through a rigid three-dimensional branching geometry is motivated by applications to haemodynamics in the brain especially, while the flow through a tube with a blockage or through a collapsed tube provides another motivation with a biomedical background. Three-dimensional motion without symmetry is addressed through one mother vessel to two or several daughters. A comparatively long axial length scale of the geometry leads to a longitudinal vortex system providing a slender-flow model for the complete mother-and-daughters flow response. Computational studies and subsequent analysis, along with comparisons, are presented. The relative flow rate varies in terms of an effective Reynolds number dependence, allowing a wide range of flow rates to be examined theoretically; also any rigid cross-sectional shape and ratio of cross-sectional area expansion or contraction from the mother vessel to the daughters can be accommodated in principle in both the computations and the analysis. Swirl production with substantial crossflows is found. The analysis shows that close to any carina (the ridge separating daughter vessels) or carinas at a branch junction either forward or reversed motion can be observed locally at the saddle point even though the bulk of the motion is driven forward into the daughters. The local forward or reversed motion is controlled, however, by global properties of the geometry and incident conditions, a feature which applies to any of the flow rates examined.

Copyright
References
Hide All
Bennett J. M. 1987 Theoretical properties of three-dimensional interactive boundary layers. PhD thesis, University of London.
Bertram C. D. & Godbole S. A. 1997 LDA measurements of velocities in a simulated collapsed tube. Trans. ASME J. Biomech. Engng 119, 357363.
Blyth M. G. & Mestel A. J. 1999 Steady flow in a dividing pipe. J. Fluid Mech. 401, 339364.
Cassot F., Zagzoule M. & Marc-Vergnes J. P. 2000 Hemodynamics role of the circle of Willis in stenoses of internal carotid arteries. an analytical solution of a linear model. J. Biomech 33, 395405.
Comer J. K., Kleinstreuer C. & Zhang Z. 2001 a Flow structures and particle deposition patterns in double-bifurcation airway models. Part 1. Air flow fields. J. Fluid Mech. 435, 2554.
Comer J. K., Kleinstreuer C. & Zhang Z. 2001 b Flow structures and particle deposition patterns in double-bifurcation airway models. Part 2. Aerosol transport and deposition. J. Fluid Mech. 435, 5580.
Cummings L. J., Wattis S. L. & Graham J. A. D. 2004 The effect of ureteric stents on urine flow: reflux. J. Math. Biol. 49, 5682.
Ferrandez A., David T., Bamford J. & Guthrie A. 2000 Computational models of blood flow in the circle of Willis. Computer Meth. Biomech. Biomed. Engng 4, 126.
Gao E., Young W. L., Ornstein E., Pile-Spellman J. & Ma Q. 1997 A theoretical model of cerebral hemodynamics: application to the study of arteriovenous malformations. J. Cerebral Blood Flow Metab. 17, 905918.
Gnanalingham K., Taylor W. & Watkin L. 2002 Dual technique for obliteration of small arteriovenous malformations. Brit. J. Neurosurg. 16 (4), 376380.
Griffiths D. J. 1971 Hydrodynamics of male micturition – I: theory of steady flow through elastic-walled tubes. Med. Biol. Engng 9, 581588.
Griffiths D. J. 1987 Dynamics of the upper urinary tract: I. peristaltic flow through a distensible tube of limited length. Phys. Med. Biol. 32, 813822.
Griffiths D. J., Constantinou C. E., Mortensen J. & Djurhuus J. C. 1987 Dynamics of the upper urinary tract: II. the effect of variations or peristaltic frequency and bladder pressure on pyeloureteral pressure/flow relations. Phys. Med. Biol. 32, 823833.
Grotberg J. B. & Jensen O. E. 2004 Biofluidmechanics of flexible tubes. Annu. Rev. Fluid Mech. 36, 121147.
Hademenos G. J., Massoud T. F. & Vinuela F. 1996 A biomathematical model of intracranial arteriovenous malformations based on electrical network analysis. theory and hemodynamics. Neurosurgery 38, 10051015.
Handa T., Negoro M., Miyachi S. & Sugita K. 1993 Evaluation of pressure changes in feeding arteries during embolization of intracerebral arteriovenous malformations. J. Neurosurg. 79, 383389.
Hillen B., Drinkenburg B. A. H., Hoogstraten H. W. & Post L. 1988 Analysis of flow and vascular resistance in a model of the circle of Willis. J. Biomech. 21, 807814.
Hillen B., Hoogstraten H. W. & Post L. 1986 A mathematical model of the flow in the circle of Willis. J. Biomech. 19, 187194.
Kufahl R. H. & Clark M. E. 1985 A circle of Willis simulation using distensible vessels and pulsatile flow. J. Biomech. Engng 107, 112122.
Luo X. Y. & Pedley T. J. 2000 Multiple solutions and flow limitation in collapsible channel flows. J. Fluid Mech. 420, 301324.
Marini B. D. & Smith C. R. 2002 The influence of impinging boundary layer vorticity packets on turbulent juncture flow behavior. In Proc. 2nd Intl Sympo. on Turbulence and Shear Flow Phenomena, Stockholm, Sweden (ed. Eaton J. A. & Sommerfield M.), pp. 245254. Springer.
Marzo A., Luo X. Y. & Bertram C. D. 2005 Three-dimensional collapse and steady flow in thick-walled flexible tubes. J. Fluids Struct. 20, 817835.
Mittal R. & Iaccarino G. 2005 Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239261.
Olufsen M. S. 1999 Structured tree outflow condition for blood flow in larger systemic arteries. Am. J. Physiol. Heart Circ. Physiol. 276, H257268.
Ovenden N. C., Smith F. T. & Wu G. X. 2008 The effects of nonsymmetry in a branching flow network. J. Engng Maths (to appear).
Pedley T. J. 1997 Pulmonary fluid dynamics. Annu. Rev. Fluid Mech. 9, 229274.
Peskin C. S. 2002 The immersed boundary method. Acta Numerica pp. 1–39.
Seal C. V. & Smith C. R. 1997 Intertwining laminar necklace vortices. Phys. Fluids 9 (9).
Seal C. V., Smith C. R., Akin O. & Rockwell D. 1995 a Quantitative characteristics of a laminar, unsteady necklace vortex system in a rectangular block-flat plate juncture. J. Fluid Mech. 286, 117135.
Seal C. V., Smith C. R. & Rockwell D. 1995 b Vorticity distribution in endwall junctions. AIAA Paper 95-2238.
Smith F. T. 1977 Steady motion through a branching tube. Proc. R. Soc. Lond. A 355, 167187.
Smith F. T. 1978 Flow through symmetrically constricted tubes. J. Inst. Maths Applics. 21, 145156.
Smith F. T., Dennis S. C. R., Jones M. A., Ovenden N. C., Purvis R. & Tadjfar M. 2003 a Fluid flow through various branching tubes. J. Engng Maths 47, 277298.
Smith F. T. & Gajjar J. S. B. 1984 Flow past wing-body junctions. J. Fluid Mech. 144, 191215.
Smith F. T. & Jones M. A. 2000 One-to-few and one-to-many branching tube flows. J. Fluid Mech. 423, 131.
Smith F. T, Ovenden N. C, Franke P. & Doorly D. J. 2003 b What happens to pressure when a flow enters a side branch? J. Fluid Mech. 479, 231258.
Smith F. T. & Timoshin S. N. 1996 Blade-wake interactions and rotary boundary layers. Proc. R. Soc. Lond. A 452, 13011329.
Stacey R. & Kitchen N. D. 1999 Recent advances in the management of cerebrovascular disease: the diminishing role of the surgeon? Ann. R. Coll. Surg. Engrs 81, 8689.
Tadjfar M. & Himeno R. 2001 Parallel multi-zone multi-block solver to study arterial branches in the human vascular system. In Proc. Intl Mech. Engng Congr. and Expo-2001, New York, pp. 1–7. ASME.
Tadjfar M. & Smith F. T. 2004 Direct simulations and modelling of basic three-dimensional bifurcating tube flows. J. Fluid Mech. 519, 132.
Ursino M. & Lodi C. A. 1997 A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics. J. Appl. Physiol. 82, 12561269.
Wilquem F. & Degrez G. 1997 Numerical modelling of steady inspiratory airflow through a three-generation model of the human central airways. Trans. ASME: J. Biomech. Engng 119, 5967.
Zagzoule M. & Marc-Vergnes J. P. 1986 A global mathematical model of the cerebral circulation in man. J. Biomech. 19 (12), 10151022.
Zhao Y. & Lieber B. B. 1994 Steady inspiratory flow in a model symmetric bifurcation. Trans. ASME: J. Biomech. Engng 116, 488496.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 20 *
Loading metrics...

Abstract views

Total abstract views: 78 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th November 2017. This data will be updated every 24 hours.