No CrossRef data available.
Published online by Cambridge University Press: 21 July 2025
The nucleation of bubbles on rough substrates has been widely investigated in various applications such as electrolysis processes and fluid transportation in pipelines. However, the microscopic mechanisms underlying surface bubble nucleation are not fully understood. Using molecular dynamics simulations, we evaluate the probability of surface bubble nucleation, quantified by the magnitude of the nucleation threshold. Bubble nucleation preferentially occurs at the solid interfaces containing nanoscale defects or wells (nanowells), where reduced nucleation thresholds are observed. For the gas-entrapped nanowell, as the nanowell width decreases, the threshold of bubble nucleation around the nanowell gradually increases, eventually approaching a critical value close to that of a smooth surface. This results from a decrease in the amount of entrapped gas that promotes bubble nucleation, and the entrapped gas eventually converges to a critical state as the width decreases. For the liquid-filled nanowell, bubble nucleation initiates from the inner corner of the large nanowell. As the nanowell width decreases, the threshold is first kept constant and then decreases. This results from a decrease in the amount of filled liquid that inhibits bubble nucleation and from the enhanced confinement effect of the inner wall on the filled liquid as the width decreases. In this work, we propose a multiscale model integrating classical nucleation theory, van der Waals fluid theory and statistical mechanics to describe the relationship between nucleation threshold and nanowell width. Eventually, a unified phase diagram of bubble nucleation at the rough interface is summarised, offering fundamental insights for integrated system design.