Hostname: page-component-cb9f654ff-pvkqz Total loading time: 0 Render date: 2025-08-27T12:15:02.302Z Has data issue: false hasContentIssue false

A multiscale model for bubble nucleation thresholds on solid walls in the presence of nanometre-sized defects

Published online by Cambridge University Press:  21 July 2025

Changsheng Chen
Affiliation:
New Cornerstone Science Laboratory, Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, 100084 Beijing, PR China
Yawen Gao
Affiliation:
New Cornerstone Science Laboratory, Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, 100084 Beijing, PR China
Feng Wang
Affiliation:
New Cornerstone Science Laboratory, Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, 100084 Beijing, PR China
Chao Sun*
Affiliation:
New Cornerstone Science Laboratory, Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, 100084 Beijing, PR China Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China
*
Corresponding author: Chao Sun, chaosun@tsinghua.edu.cn

Abstract

The nucleation of bubbles on rough substrates has been widely investigated in various applications such as electrolysis processes and fluid transportation in pipelines. However, the microscopic mechanisms underlying surface bubble nucleation are not fully understood. Using molecular dynamics simulations, we evaluate the probability of surface bubble nucleation, quantified by the magnitude of the nucleation threshold. Bubble nucleation preferentially occurs at the solid interfaces containing nanoscale defects or wells (nanowells), where reduced nucleation thresholds are observed. For the gas-entrapped nanowell, as the nanowell width decreases, the threshold of bubble nucleation around the nanowell gradually increases, eventually approaching a critical value close to that of a smooth surface. This results from a decrease in the amount of entrapped gas that promotes bubble nucleation, and the entrapped gas eventually converges to a critical state as the width decreases. For the liquid-filled nanowell, bubble nucleation initiates from the inner corner of the large nanowell. As the nanowell width decreases, the threshold is first kept constant and then decreases. This results from a decrease in the amount of filled liquid that inhibits bubble nucleation and from the enhanced confinement effect of the inner wall on the filled liquid as the width decreases. In this work, we propose a multiscale model integrating classical nucleation theory, van der Waals fluid theory and statistical mechanics to describe the relationship between nucleation threshold and nanowell width. Eventually, a unified phase diagram of bubble nucleation at the rough interface is summarised, offering fundamental insights for integrated system design.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abyzov, A., Schmelzer, J. & Davydov, L. 2017 Heterogeneous nucleation on rough surfaces: generalized Gibbs’ approach. J. Chem. Phys. 147 (21), 214705.10.1063/1.5006631CrossRefGoogle ScholarPubMed
Angulo, A., van der Linde, P., Gardeniers, H., Modestino, M. & Rivas, D. 2020 Influence of bubbles on the energy conversion efficiency of electrochemical reactors. Joule 4 (3), 555579.10.1016/j.joule.2020.01.005CrossRefGoogle Scholar
Auti, G., Paul, S., Hsu, W., Chiashi, S., Maruyama, S. & Daiguji, H. 2024 Statistical modeling of equilibrium phase transition in confined fluids. Phys. Rev. Res. 6 (2), 023333.10.1103/PhysRevResearch.6.023333CrossRefGoogle Scholar
Bashkatov, A., Park, S., Demirkır, C., Wood, J., Koper, M., Lohse, D. & Krug, D. 2024 Performance enhancement of electrocatalytic hydrogen evolution through coalescence-induced bubble dynamics. J. Am. Chem. Soc. 146 (14), 1017710186.10.1021/jacs.4c02018CrossRefGoogle ScholarPubMed
Binder, K., Block, B., Virnau, P. & Tröster, A. 2012 Beyond the Van Der Waals loop: what can be learned from simulating Lennard–Jones fluids inside the region of phase coexistence. Am. J. Phys. 80 (12), 10991109.10.1119/1.4754020CrossRefGoogle Scholar
Borkent, B., Gekle, S., Prosperetti, A. & Lohse, D. 2009 Nucleation threshold and deactivation mechanisms of nanoscopic cavitation nuclei. Phys. Fluids 21 (10), 102003.10.1063/1.3249602CrossRefGoogle Scholar
Bossert, M., Trimaille, I., Cagnon, L., Chabaud, B., Gueneau, C., Spathis, P., WolfP. & Rolley, E. 2023 Surface tension of cavitation bubbles. Proc. Natl Acad. Sci. USA 120 (15), e2300499120.10.1073/pnas.2300499120CrossRefGoogle ScholarPubMed
Bussonnière, A., Liu, Q. & Tsai, P. 2020 Cavitation nuclei regeneration in a water-particle suspension. Phys. Rev. Lett. 124 (3), 034501.10.1103/PhysRevLett.124.034501CrossRefGoogle Scholar
Chen, C., Zhang, H. & Zhang, X. 2023 Stable bulk nanobubbles can be regarded as gaseous analogues of microemulsions. Commun. Theor. Phys. 75 (12), 125504.10.1088/1572-9494/ad109cCrossRefGoogle Scholar
Chen, Q., Liu, Y., Edwards, M., Liu, Y. & White, H. 2020 Nitrogen bubbles at Pt nanoelectrodes in a nonaqueous medium: oscillating behavior and geometry of critical nuclei. Anal. Chem. 92 (9), 64086414.10.1021/acs.analchem.9b05510CrossRefGoogle Scholar
Chen, S., Zhang, H., Guo, Z., Pagonabarraga, I. & Zhang, X. 2024 A capillary-induced negative pressure is able to initiate heterogeneous cavitation. Soft Matt. 20 (12), 28632870.10.1039/D4SM00143ECrossRefGoogle ScholarPubMed
Debenedetti, P. 2020 Metastable Liquids: Concepts and Principles. Princeton University Press.10.2307/j.ctv10crfs5CrossRefGoogle Scholar
Deng, X., Shan, Y., Meng, X., Yu, Z., Lu, X., Ma, Y., Zhao, J., Qiu, D., Zhang, X. & Liu, Y. 2022 & others 2022 Direct measuring of single–heterogeneous bubble nucleation mediated by surface topology. Proc. Natl Acad. Sci. USA 119 (29), e2205827119.10.1073/pnas.2205827119CrossRefGoogle Scholar
Dong, W. 2021 Thermodynamics of interfaces extended to nanoscales by introducing integral and differential surface tensions. Proc. Natl Acad. Sci. USA 118 (3), e2019873118.10.1073/pnas.2019873118CrossRefGoogle ScholarPubMed
Dong, W. 2023 Nanoscale thermodynamics needs the concept of a disjoining chemical potential. Nat. Commun. 14 (1), 1824.10.1038/s41467-023-36970-7CrossRefGoogle ScholarPubMed
Edwards, M., White, H. & Ren, H. 2019 Voltammetric determination of the stochastic formation rate and geometry of individual H $_2$ , N $_2$ , and O $_2$ bubble nuclei. ACS Nano 13 (6), 63306340.10.1021/acsnano.9b01015CrossRefGoogle Scholar
Gadea, E., Perez Sirkin, Y., Molinero, V. & Scherlis, D. 2024 The smallest electrochemical bubbles. Proc. Natl Acad. Sci. USA 121 (41), e2406956121.10.1073/pnas.2406956121CrossRefGoogle ScholarPubMed
Gao, Y., Chen, C., Wang, F., Li, M. & Sun, C. 2025 Characterization and removal of contaminants in lithography. Sci. China Phys. Mech. Astron. 68 (9), 294702.10.1007/s11433-024-2538-9CrossRefGoogle Scholar
Guo, S., 2025 Separating nanobubble nucleation for transfer-resistance-free electrocatalysis. Nat. Commun. 16 (1), 919.10.1038/s41467-024-55750-5CrossRefGoogle ScholarPubMed
Guo, Z., Liu, Y., Xiao, Q. & Zhang, X. 2016 Hidden nanobubbles in undersaturated liquids. Langmuir 32 (43), 1132811334.10.1021/acs.langmuir.6b01766CrossRefGoogle ScholarPubMed
Guo, Z. & Zhang, X. 2019 Enhanced fluctuation for pinned surface nanobubbles. Phys. Rev. E 100 (5), 052803.10.1103/PhysRevE.100.052803CrossRefGoogle ScholarPubMed
Harvey, E., Barnes, D., McElroy, W., Whiteley, A., Pease, D. & Cooper, K. 1944 Bubble formation in animals. I. Physical factors. J. Cell. Compar. Physiol. 24 (1), 122.10.1002/jcp.1030240102CrossRefGoogle Scholar
Hill, T. 1962 Thermodynamics of small systems. J. Chem. Phys. 36 (12), 31823197.10.1063/1.1732447CrossRefGoogle Scholar
Hill, T. 1994 Thermodynamics of Small Systems. Courier Corporation.Google Scholar
Johnston, D. 2014 Advances in Thermodynamics of the Van der Waals Fluid. Morgan & Claypool Publishers.10.1088/978-1-627-05532-1CrossRefGoogle Scholar
Kempler, P., Coridan, R. & Luo, L. 2024 Gas evolution in water electrolysis. Chem. Rev. 124 (19), 1096411007.10.1021/acs.chemrev.4c00211CrossRefGoogle ScholarPubMed
Legendre, D. & Zenit, R. 2025 Gas bubble dynamics. Rev. Mod. Phys. 97 (2), 025001.10.1103/RevModPhys.97.025001CrossRefGoogle Scholar
Li, Y., Li, M., Zhang, L. & Wang, B. 2024 Bridging the gap: unraveling the role of nano-gas nuclei in the non-equilibrium water–vapor phase transition. Intl J. Heat Mass Transfer 232, 125958.10.1016/j.ijheatmasstransfer.2024.125958CrossRefGoogle Scholar
Liu, Y. & Zhang, X. 2014 A unified mechanism for the stability of surface nanobubbles: contact line pinning and supersaturation. J. Chem. Phys. 141 (13), 134702.10.1063/1.4896937CrossRefGoogle ScholarPubMed
Liu, Y. & Zhang, X. 2017 Molecular dynamics simulation of nanobubble nucleation on rough surfaces. J. Chem. Phys. 146 (16), 164704.10.1063/1.4981788CrossRefGoogle ScholarPubMed
Lohse, D. 2018 Bubble puzzles: from fundamentals to applications. Phys. Rev. Fluids 3 (11), 110504.10.1103/PhysRevFluids.3.110504CrossRefGoogle Scholar
Lohse, D. & Prosperetti, A. 2016 Homogeneous nucleation: patching the way from the macroscopic to the nanoscopic description. Proc. Natl Acad. Sci. USA 113 (48), 1354913550.10.1073/pnas.1616271113CrossRefGoogle Scholar
Lohse, D. & Zhang, X. 2015 Surface nanobubbles and nanodroplets. Rev. Mod. Phys. 87 (3), 9811035.10.1103/RevModPhys.87.981CrossRefGoogle Scholar
Ma, Y., Guo, Z., Chen, Q. & Zhang, X. 2021 Dynamic equilibrium model for surface nanobubbles in electrochemistry. Langmuir 37 (8), 27712779.10.1021/acs.langmuir.0c03537CrossRefGoogle ScholarPubMed
Maheshwari, S., Van Der Hoef, M., Zhang, X. & Lohse, D. 2016 Stability of surface nanobubbles: a molecular dynamics study. Langmuir 32 (43), 1111611122.10.1021/acs.langmuir.6b00963CrossRefGoogle ScholarPubMed
Mathai, V., Lohse, D. & Sun, C. 2020 Bubbly and buoyant particle–laden turbulent flows. Annu. Rev. Condens. Matter Phys. 11 (1), 529559.10.1146/annurev-conmatphys-031119-050637CrossRefGoogle Scholar
Menzl, G., Gonzalez, M., Geiger, P., Caupin, F., Abascal, J., Valeriani, C. & Dellago, C. 2016 Molecular mechanism for cavitation in water under tension. Proc. Natl Acad. Sci. USA 113 (48), 1358213587.10.1073/pnas.1608421113CrossRefGoogle ScholarPubMed
Park, S., Liu, L., Demirkır, C., van der Heijden, O., Lohse, D., Krug, D. & Koper, M. 2023 Solutal marangoni effect determines bubble dynamics during electrocatalytic hydrogen evolution. Nat. Chem. 15 (11), 15321540.10.1038/s41557-023-01294-yCrossRefGoogle ScholarPubMed
Pfeiffer, P., Shahrooz, M., Tortora, M., Casciola, C., Holman, R., Salomir, R., Meloni, S. & Ohl, C. 2022 Heterogeneous cavitation from atomically smooth liquid–liquid interfaces. Nat. Phys. 18 (12), 14311435.10.1038/s41567-022-01764-zCrossRefGoogle Scholar
Plimpton, S. 1995 Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117 (1), 119.10.1006/jcph.1995.1039CrossRefGoogle Scholar
Qian, H. 2012 Hill’s small systems nanothermodynamics: a simple macromolecular partition problem with a statistical perspective. J. Biol. Phys. 38 (2), 201207.10.1007/s10867-011-9254-4CrossRefGoogle ScholarPubMed
Reguera, D., Bowles, R., Djikaev, Y. & Reiss, H. 2003 Phase transitions in systems small enough to be clusters. J. Chem. Phys. 118 (1), 340353.10.1063/1.1524192CrossRefGoogle Scholar
Sepahi, F., Verzicco, R., Lohse, D. & Krug, D. 2024 Mass transport at gas-evolving electrodes. J. Fluid Mech. 983, A19.10.1017/jfm.2024.51CrossRefGoogle Scholar
Van Der Linde, P., Penas-Lopez, P., Soto, A., Van Der Meer, D., Lohse, D., Gardeniers, H. & Rivas, D. 2018 Gas bubble evolution on microstructured silicon substrates. Energy Environ. Sci. 11 (12), 34523462.10.1039/C8EE02657BCrossRefGoogle Scholar
Wang, Z. 2023 a Investigation on the dynamic behaviors of single surface CO nanobubbles during CO $_2$ electroreduction in ionic liquids. Chem. Engng Sci. 276, 118771.10.1016/j.ces.2023.118771CrossRefGoogle Scholar
Wang, Z., Li, Z., Velázquez-Palenzuela, A., Bai, Y., Dong, H., Bai, L. & Zhang, X. 2023 b Nucleation behavior and kinetics of single hydrogen nanobubble in ionic liquid system. Intl J. Hydrogen Energy 48 (43), 1619816205.10.1016/j.ijhydene.2023.01.168CrossRefGoogle Scholar
Xiao, Q., Liu, Y., Guo, Z., Liu, Z. & Zhang, X. 2017 How nanobubbles lose stability: effects of surfactants. Appl. Phys. Lett. 111 (13), 131601.10.1063/1.5000831CrossRefGoogle Scholar
Xu, W., Lu, Z., Sun, X., Jiang, L. & Duan, X. 2018 Superwetting electrodes for gas-involving electrocatalysis. Acc. Chem. Res. 51 (7), 15901598.10.1021/acs.accounts.8b00070CrossRefGoogle ScholarPubMed
Yu, J., 2023 Interfacial nanobubbles’ growth at the initial stage of electrocatalytic hydrogen evolution. Energy Environ. Sci. 16 (5), 20682079.10.1039/D2EE04143JCrossRefGoogle Scholar
Zhang, H., Chen, C., Zhang, X. & Doi, M. 2022 Gas–liquid transition of van der Waals fluid confined in fluctuating nano-space. J. Chem. Phys. 156 (12), 124701.10.1063/5.0073560CrossRefGoogle Scholar
Zhang, H., Guo, Z., Frenkel, D., Dobnikar, J. & Zhang, X. 2024 a Thermodynamic properties of pinned nanobubbles. J. Chem. Phys. 161 (20), 204505.10.1063/5.0225131CrossRefGoogle ScholarPubMed
Zhang, P., Chen, C., Feng, M., Sun, C. & Xu, X. 2024 b Hydroxide and hydronium ions modulate the dynamic evolution of nitrogen nanobubbles in water. J. Am. Chem. Soc. 146 (28), 1953719546.10.1021/jacs.4c06641CrossRefGoogle ScholarPubMed
Zhang, Y. & Lohse, D. 2023 Minimum current for detachment of electrolytic bubbles. J. Fluid Mech. 975, R3.10.1017/jfm.2023.898CrossRefGoogle Scholar
Zhang, Y., Zhu, X., Wood, J. & Lohse, D. 2024 c Threshold current density for diffusion-controlled stability of electrolytic surface nanobubbles. Proc. Natl Acad. Sci. USA 121 (21), e2321958121.10.1073/pnas.2321958121CrossRefGoogle ScholarPubMed