Hostname: page-component-6bb9c88b65-znhjv Total loading time: 0 Render date: 2025-07-20T08:35:29.587Z Has data issue: false hasContentIssue false

Natural convection of linear entangled polymer in a differentially heated cavity

Published online by Cambridge University Press:  18 July 2025

Bo Guo
Affiliation:
School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, PR China
Rong Liu
Affiliation:
School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, PR China
Xinhui Si*
Affiliation:
School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, PR China
*
Corresponding author: Xinhui Si, sixinhui@sas.ustb.edu.cn

Abstract

This paper numerically investigates the heat transport and bifurcation of natural convection in a differentially heated cavity filled with entangled polymer solution combined with the boundary layer and kinetic energy budget analysis. The polymers are described by the Rolie-Poly model, which effectively captures the rheological response of entangled polymers. The results indicate that the competition between its shear-thinning and elasticity dominates the flow structures and heat transfer rate. The addition of polymers tends to enhance the heat transfer as the polymer viscosity ratio ($\beta$) decreases or the relaxation time ratio ($\xi$) increases. The amount of heat transfer enhancement (HTE) behaves non-monotonically, which first increases significantly and then remains almost constant or decreases slightly with the Weissenberg number ($Wi$). The critical $Wi$ gradually increases with the increasing $\xi$, where the maximum HTE reaches approximately $64.9\,\%$ at $\beta = 0.1$. It is interesting that even at low Rayleigh numbers, the flow transitions from laminar to periodic flows in scenarios with strong elasticity. The bifurcation is subcritical and exhibits a typical hysteresis loop. Then, the bifurcation routes driven by inertia and elasticity are examined by direct numerical simulations. These results are illustrated by time histories, Fourier spectra analysis and spatial structures observed at varying time intervals. The kinetic energy budget indicates that the stretch of the polymers leads to great energy exchange between polymers and flow structures, which plays a crucial role in the hysteresis phenomenon. This dynamic behaviour contributes to the strongly self-sustained and self-enhancing processes in the flow.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection. Rev. Mod. Phys. 81 (2), 503537.10.1103/RevModPhys.81.503CrossRefGoogle Scholar
Ahlers, G. & Nikolaenko, A. 2010 Effect of a polymer additive on heat transport in turbulent Rayleigh-Bénard convection. Phys. Rev. Lett. 104 (3), 034503.10.1103/PhysRevLett.104.034503CrossRefGoogle ScholarPubMed
Alves, M.A., Oliveira, P.J. & Pinho, F.T. 2003 A convergent and universally bounded interpolation scheme for the treatment of advection. Intl J Numer. Meth. Fluids 41 (1), 4775.10.1002/fld.428CrossRefGoogle Scholar
Alves, M.A., Oliveira, P.J. & Pinho, F.T. 2021 Numerical methods for viscoelastic fluid flows. Annu. Rev. Fluid Mech. 53 (1), 509541.10.1146/annurev-fluid-010719-060107CrossRefGoogle Scholar
Benzi, R., Ching, E.S.C. & Chu, V.W.S. 2012 Heat transport by laminar boundary layer flow with polymers. J. Fluid Mech. 696, 330344.10.1017/jfm.2012.46CrossRefGoogle Scholar
Benzi, R., Ching, E.S.C. & De Angelis, E. 2010 Effect of polymer additives on heat transport in turbulent thermal convection. Phys. Rev. Lett. 104 (2), 024502.10.1103/PhysRevLett.104.024502CrossRefGoogle ScholarPubMed
Benzi, R., Ching, E.S.C. & De Angelis, E. 2016 Turbulent Rayleigh–Bénard convection with polymers: understanding how heat flux is modified. Phys. Rev. E 94 (6), 063110.10.1103/PhysRevE.94.063110CrossRefGoogle ScholarPubMed
Benzi, R., Ching, E.S.C., Yu, W.C.K. & Wang, Y.Q. 2016 Heat transport modification by finitely extensible polymers in laminar boundary layer flow. J. Fluid Mech. 788, 337357.10.1017/jfm.2015.714CrossRefGoogle Scholar
Bergé, P. & Dubois, M. 1984 Rayleigh–Bénard convection. Contemp. Phys. 25 (6), 535582.10.1080/00107518408210730CrossRefGoogle Scholar
Bird, R.B., Hassager, O., Armstrong, R.C. & Curtis, C.F. 1987 Dynamics of Polymeric Liquids. Wiley-Interscience.Google Scholar
Cai, W.H., Li, F.C. & Zhang, H.N. 2010 DNS study of decaying homogeneous isotropic turbulence with polymer additives. J. Fluid Mech. 665, 334356.10.1017/S0022112010003939CrossRefGoogle Scholar
Carter, K.A., Girkin, J.M. & Fielding, S.M. 2016 Shear banding in large amplitude oscillatory shear (LAOStrain and LAOStress) of polymers and wormlike micelles. J. Rheol. 60 (5), 883904.10.1122/1.4960512CrossRefGoogle Scholar
Chauhan, A., Sahu, P.M. & Sasmal, C. 2021 Effect of polymer additives and viscous dissipation on natural convection in a square cavity with differentially heated side walls. Intl J. Heat Mass Transfer 175, 121342.10.1016/j.ijheatmasstransfer.2021.121342CrossRefGoogle Scholar
Cheng, J.P., Cai, W.H., Zhang, H.N., Li, F.C., Shen, L., Yu, B. & Qian, S.Z. 2019 Numerical study on the dynamic process of single plume flow in thermal convection with polymers. Phys. Fluids 31 (2), 023105.10.1063/1.5083195CrossRefGoogle Scholar
Cheng, J.P., Zhang, H.N., Cai, W.H., Li, S.N. & Li, F.C. 2017 Effect of polymer additives on heat transport and large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Rev. E 96 (1), 013111.10.1103/PhysRevE.96.013111CrossRefGoogle ScholarPubMed
Comminal, R., Spangenberg, J. & Hattel, J.H. 2015 Robust simulations of viscoelastic flows at high Weissenberg numbers with the streamfunction/log-conformation formulation. J. Non-Newtonian Fluid Mech. 223, 3761.10.1016/j.jnnfm.2015.05.003CrossRefGoogle Scholar
de Gennes, P.G.J. 1971 Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys. 55 (2), 572579.10.1063/1.1675789CrossRefGoogle Scholar
de Vahl Davis, G. 1983 Natural convection of air in a square cavity: a bench mark numerical solution. Intl J. Numer. Meth. Fluids 3 (3), 249264.10.1002/fld.1650030305CrossRefGoogle Scholar
Dixit, H.N. & Babu, V. 2006 Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method. Intl J. Heat Mass Transfer 49 (3-4), 727739.10.1016/j.ijheatmasstransfer.2005.07.046CrossRefGoogle Scholar
Doi, M. & Edwards, S.F. 1986 The Theory of Polymer Dynamics. Clarendon.Google Scholar
Dubief, Y. & Terrapon, V.E. 2020 Heat transfer enhancement and reduction in low-Rayleigh number natural convection flow with polymer additives. Phys. Fluids 32 (3), 033103.10.1063/1.5143275CrossRefGoogle Scholar
Fattal, R. & Kupferman, R. 2005 Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation. J. Non-Newtonian Fluid Mech. 126 (1), 2337.10.1016/j.jnnfm.2004.12.003CrossRefGoogle Scholar
Fusegi, T. & Hyun, J.M. 1994 Laminar and transitional natural convection in an enclosure with complex and realistic conditions. Intl J. Heat Fluid Flow 15 (4), 258268.10.1016/0142-727X(94)90011-6CrossRefGoogle Scholar
Graham, R.S., Likhtman, A.E., McLeish, T.C.B. & Milner, S.T. 2003 Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release. J. Rheol. 47 (5), 11711200.10.1122/1.1595099CrossRefGoogle Scholar
Groisman, A. & Steinberg, V. 2000 Elastic turbulence in a polymer solution flow. Nature 405 (6782), 5355.10.1038/35011019CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.10.1017/S0022112099007545CrossRefGoogle Scholar
Henkes, R.A.W.M. & Hoogendoorn, C.J. 1990 On the stability of the natural convection flow in a square cavity heated from the side. Appl. Sci. Res. 47 (3), 195220.10.1007/BF00418051CrossRefGoogle Scholar
Hoyle, D.M. & Fielding, S.M. 2017 Necking after extensional filament stretching of complex fluids and soft solids. J. Non-Newtonian Fluid Mech. 247, 132145.10.1016/j.jnnfm.2017.06.009CrossRefGoogle Scholar
Ianniruberto, G. & Marrucci, G. 1996 On compatibility of the Cox–Merz rule with the model of Doi and Edwards. J. Non-Newtonian Fluid Mech. 65 (2–3), 241246.10.1016/0377-0257(96)01433-4CrossRefGoogle Scholar
Ivey, G.N. 1984 Experiments on transient natural convection in a cavity. J. Fluid Mech. 144, 389401.10.1017/S0022112084001658CrossRefGoogle Scholar
Kabanemi, K.K. & Hétu, J.F. 2009 Nonequilibrium stretching dynamics of dilute and entangled linear polymers in extensional flow. J. Non-Newtonian Fluid Mech. 160 (2–3), 113121.10.1016/j.jnnfm.2009.03.006CrossRefGoogle Scholar
Keithley, K.S.M., Palmerio, J., Escobedo, H.A. IV, Bartlett, J., Huang, H., Villasmil, L.A., Cromer, M. 2023 Role of shear thinning in the flow of polymer solutions around a sharp bend. Rheol. Acta 62 (7), 377391.10.1007/s00397-023-01399-8CrossRefGoogle Scholar
Kenney, C.S. & Laub, A.J. 1998 A schur-fréchet algorithm for computing the logarithm and exponential of a matrix. SIAM J. Matrix Anal. Applics. 19 (3), 640663.10.1137/S0895479896300334CrossRefGoogle Scholar
Keunings, R. 1986 On the high Weissenberg number problem. J. Non-Newtonian Fluid Mech. 20, 209226.10.1016/0377-0257(86)80022-2CrossRefGoogle Scholar
Kishor, V., Singh, S. & Srivastava, A. 2020 On the identification of flow instabilities in a differentially-heated closed cavity: non-intrusive measurements. Intl J. Heat Mass Transfer 147, 118933.10.1016/j.ijheatmasstransfer.2019.118933CrossRefGoogle Scholar
Larson, R.G. & Desai, P.S. 2015 Modeling the rheology of polymer melts and solutions. Annu. Rev. Fluid Mech. 47 (1), 4765.10.1146/annurev-fluid-010814-014612CrossRefGoogle Scholar
Lee, J., Zhang, J. & Lu, C.C. 2003 Incomplete LU preconditioning for large scale dense complex linear systems from electromagnetic wave scattering problems. J. Comput. Phys. 185 (1), 158175.10.1016/S0021-9991(02)00052-9CrossRefGoogle Scholar
Le Quéré, P. 1991 Accurate solutions to the square thermally driven cavity at high Rayleigh number. Comput. Fluids 20 (1), 2941.10.1016/0045-7930(91)90025-DCrossRefGoogle Scholar
Le Quéré, P. & Behnia, M. 1998 From onset of unsteadiness to chaos in a differentially heated square cavity. J. Fluid Mech. 359, 81107.10.1017/S0022112097008458CrossRefGoogle Scholar
Likhtman, A.E. & Graham, R.S. 2003 Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie-Poly equation. J. Non-Newtonian Fluid Mech. 114 (1), 112.10.1016/S0377-0257(03)00114-9CrossRefGoogle Scholar
Liu, Q.S., Liu, G.X., Liu, Y.Q., Jiang, C.T. & Ke, C.H. 2022 Numerical study of the flow of polystyrene melts in contraction flow using Rolie–Poly model. Rheol. Acta 61 (2), 139161.10.1007/s00397-021-01319-8CrossRefGoogle Scholar
Liu, Q.S., Ouyang, J., Jiang, C., Zhuang, X. & Li, W. 2016 Finite volume simulations of behavior for polystyrene in a cross-slot flow based on Rolie–Poly model. Rheol. Acta 55 (2), 137154.10.1007/s00397-015-0905-4CrossRefGoogle Scholar
Marrucci, G. 1996 Dynamics of entanglements: a nonlinear model consistent with the Cox–Merz rule. J. Non-Newtonian Fluid Mech. 62 (2-3), 279289.10.1016/0377-0257(95)01407-1CrossRefGoogle Scholar
Mead, D.W., Larson, R.G. & Doi, M. 1998 A molecular theory for fast flows of entangled polymers. Macromolecules 31 (22), 78957914.10.1021/ma980127xCrossRefGoogle Scholar
Milner, S.T., McLeish, T.C.B. & Likhtman, A.E. 2001 Microscopic theory of convective constraint release. J. Rheol. 45 (2), 539563.10.1122/1.1349122CrossRefGoogle Scholar
Morozov, A.N. & van Saarloos, W. 2007 An introductory essay on subcritical instabilities and the transition to turbulence in visco-elastic parallel shear flows. Phys. Rep. 447 (3–6), 112143.10.1016/j.physrep.2007.03.004CrossRefGoogle Scholar
Ostrach, S. 1972 Natural convection in enclosures. Adv. Heat Transfer 8, 161227.10.1016/S0065-2717(08)70039-XCrossRefGoogle Scholar
Paolucci, S. & Chenoweth, D.R. 1989 Transition to chaos in a differentially heated vertical cavity. J. Fluid Mech. 201 (6), 379410.10.1017/S0022112089000984CrossRefGoogle Scholar
Peng, S., Li, J.Y., Xiong, Y.L., Xu, X.Y. & Yu, P. 2021 Numerical simulation of two-dimensional unsteady Giesekus flow over a circular cylinder. J. Non-Newtonian Fluid Mech. 294, 104571.10.1016/j.jnnfm.2021.104571CrossRefGoogle Scholar
Pimenta, F. & Alves, M.A. 2017 Stabilization of an open-source finite-volume solver for viscoelastic fluid flows. J. Non-Newtonian Fluid Mech. 239, 85104.10.1016/j.jnnfm.2016.12.002CrossRefGoogle Scholar
Polasanapalli, S.R.G. & Anupindi, k. 2019 A high-order compact finite-difference lattice Boltzmann method for simulation of natural convection. Comput. Fluids 181, 259282.10.1016/j.compfluid.2019.02.007CrossRefGoogle Scholar
Reis, T. & Wilson, H.J. 2013 Rolie–Poly fluid flowing through constrictions: two distinct instabilities. J. Non-Newtonian Fluid Mech. 195, 7787.10.1016/j.jnnfm.2013.01.002CrossRefGoogle Scholar
Rothstein, J.P. & McKinley, G.H. 2002 A comparison of the stress and birefringence growth of dilute, semi-dilute and concentrated polymer solutions in uniaxial extensional flows. J. Non-Newtonian Fluid Mech. 108 (1–3), 275290.10.1016/S0377-0257(02)00134-9CrossRefGoogle Scholar
Sasmal, C., Khan, M.B. & Chhanbra, R.P. 2020 Combined influence of fluid viscoelasticity and inertia on forced convection heat transfer from a circular cylinder. J. Heat Transfer 142 (4), 041801.10.1115/1.4046308CrossRefGoogle Scholar
Scheel, J.D., Kim, E. & White, K.R. 2012 Thermal and viscous boundary layers in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 711, 281305.10.1017/jfm.2012.392CrossRefGoogle Scholar
Su, Z.G., Li, T.F., Luo, K., Wu, J. & Yi, H.L. 2021 Electro-thermo-convection in non-Newtonian power-law fluids within rectangular enclosures. J. Non-Newtonian Fluid Mech. 288, 104470.10.1016/j.jnnfm.2020.104470CrossRefGoogle Scholar
Toms, B.A. 1949 Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. In Proceedings of thr 1st International Congress on Rheology, vol. 2, pp. 135141.Google Scholar
Toppaladoddi, S. & Wettlaufer, J. 2018 Penetrative convection at high Rayleigh numbers. Phys. Rev. Fluids 3 (4), 043501.10.1103/PhysRevFluids.3.043501CrossRefGoogle Scholar
Turan, O., Chakraborty, N. & Poole, R.J. 2010 Laminar natural convection of bingham fluids in a square enclosure with differentially heated side walls. J. Non-Newtonian Fluid Mech. 165 (15-16), 901913.10.1016/j.jnnfm.2010.04.013CrossRefGoogle Scholar
Turan, O., Lai, R.J., Poole, R.J. & Chakraborty, N. 2013 Laminar natural convection of power-law fluids in a square enclosure submitted from below to a uniform heat flux density. J. Non-Newtonian Fluid Mech. 199 (12), 8095.10.1016/j.jnnfm.2013.06.002CrossRefGoogle Scholar
Turan, O., Sachdeva, A., Chakraborty, N. & Poole, R.J. 2011 Laminar natural convection of power-law fluids in a square enclosure with differentially heated side walls subjected to constant temperatures. J. Non-Newtonian Fluid Mech. 166 (17–18), 10491062.10.1016/j.jnnfm.2011.06.003CrossRefGoogle Scholar
Turan, O., Sachdeva, A., Poole, R.J. & Chakraborty, N. 2012 Laminar natural convection of power-law fluids in a square enclosure with differentially heated sidewalls subjected to constant wall heat flux. J. Heat Transfer 134 (12), 122504.10.1115/1.4007123CrossRefGoogle Scholar
Wang, Y., Cheng, J.P., Zhang, H.N., Zheng, X., Cai, W.H. & Siginer, D.A. 2023 Pattern selection and heat transfer in the Rayleigh–Bénard convection near the vicinity of the convection onset with viscoelastic fluids. Phys. Fluids 35 (1), 013104.10.1063/5.0132949CrossRefGoogle Scholar
Wang, Y., Ma, H.H., Cai, W.H., Zhang, H.N., Cheng, J.P. & Zheng, X. 2020 A POD-Galerkin reduced-order model for two-dimensional Rayleigh–Bénard convection with viscoelastic fluid. Intl Commun. Heat Mass Transfer 117, 104747.10.1016/j.icheatmasstransfer.2020.104747CrossRefGoogle Scholar
Wei, P., Chen, T.S., Ni, R., Zhao, X.Z. & Xia, K.Q. 2014 Heat transport properties of plates with smooth and rough surfaces in turbulent thermal convection. J. Fluid Mech. 740, 2846.10.1017/jfm.2013.638CrossRefGoogle Scholar
Wei, P., Ni, R. & Xia, K.Q. 2012 Enhanced and reduced heat transport in turbulent thermal convection with polymer additives. Phys. Rev. E 86 (1), 016325.10.1103/PhysRevE.86.016325CrossRefGoogle ScholarPubMed
Xie, Y.C., Huang, S.D., Funfschilling, D., Li, X.M., Ni, R. & Xia, K.Q. 2015 Effects of polymer additives in the bulk of turbulent thermal convection. J. Fluid Mech. 784, R3.10.1017/jfm.2015.618CrossRefGoogle Scholar
Xin, S. & Le Quéré, P. 2006 Natural-convection flows in air-filled, differentially heated cavities with adiabatic horizontal walls. Numer. Heat Transfer A: Applics 50 (5), 437466.10.1080/10407780600605039CrossRefGoogle Scholar
Xu, A., Shi, L. & Xi, H.D. 2019 Lattice Boltzmann simulations of three-dimensional thermal convective flows at high Rayleigh number. Intl J. Heat Mass Transfer 140, 359370.10.1016/j.ijheatmasstransfer.2019.06.002CrossRefGoogle Scholar
Xu, A., Shi, L. & Zhao, T.S. 2017 Accelerated lattice Boltzmann simulation using GPU and OpenACC with data management. Intl J. Heat Mass Transfer 109, 577588.10.1016/j.ijheatmasstransfer.2017.02.032CrossRefGoogle Scholar
Yang, J. 2002 Viscoelastic wormlike micelles and their applications. Curr. Opin. Colloid Interface Sci. 7 (5–6), 276281.10.1016/S1359-0294(02)00071-7CrossRefGoogle Scholar
Ye, X., Larson, R.G., Pattamaprom, C. & Sridhar, T. 2003 Extensional properties of monodisperse and bidisperse polystyrene solutions. J. Rheol. 47 (2), 443468.10.1122/1.1545079CrossRefGoogle Scholar
Zhang, W.H., Li, J.F., Wang, Q.K., Ma, Y., Zhang, H.N., Yu, B. & Li, F.C. 2021 Comparative study on numerical performances of log-conformation representation and standard conformation representation in the simulation of viscoelastic fluid turbulent drag-reducing channel flow. Phys. Fluids 33 (2), 023101.10.1063/5.0034589CrossRefGoogle Scholar
Zhao, B. & Tian, Z. 2016 High-resolution high-order upwind compact scheme-based numerical computation of natural convection flows in a square cavity. Intl J. Heat Mass Transfer 98, 313328.10.1016/j.ijheatmasstransfer.2016.03.032CrossRefGoogle Scholar