Hostname: page-component-76c49bb84f-t6sgf Total loading time: 0 Render date: 2025-07-08T21:07:17.860Z Has data issue: false hasContentIssue false

Near-wall effect on vortex dynamics in the flow around a rectangular cylinder

Published online by Cambridge University Press:  13 May 2025

Jiang-Hua Li
Affiliation:
State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200040, PR China School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, PR China School of Science, Shanghai Institute of Technology, Shanghai 201418, PR China
Bo-Fu Wang*
Affiliation:
Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, PR China
Xiang Qiu
Affiliation:
Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, PR China School of Science, Shanghai Institute of Technology, Shanghai 201418, PR China
Quan Zhou
Affiliation:
Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, PR China
Shi-Xiao Fu*
Affiliation:
State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200040, PR China School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
Yu-Lu Liu
Affiliation:
Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, PR China School of Science, Shanghai Institute of Technology, Shanghai 201418, PR China
*
Corresponding authors: Bo-Fu Wang, bofuwang@shu.edu.cn; Shi-Xiao Fu, shixiao.fu@sjtu.edu.cn
Corresponding authors: Bo-Fu Wang, bofuwang@shu.edu.cn; Shi-Xiao Fu, shixiao.fu@sjtu.edu.cn

Abstract

This study presents a novel investigation into the vortex dynamics of flow around a near-wall rectangular cylinder based on direct numerical simulation at $Re=1000$, marking the first in-depth exploration of these phenomena. By varying aspect ratios ($L/D = 5$, $10$, $15$) and gap ratios ($G/D = 0.1$, $0.3$, $0.9$), the study reveals the vortex dynamics influenced by the near-wall effect, considering the incoming laminar boundary layer flow. Both $L/D$ and $G/D$ significantly influence vortex dynamics, leading to behaviours not observed in previous bluff body flows. As $G/D$ increases, the streamwise scale of the upper leading edge (ULE) recirculation grows, delaying flow reattachment. At smaller $G/D$, lower leading edge (LLE) recirculation is suppressed, with upper Kelvin–Helmholtz vortices merging to form the ULE vortex, followed by instability, differing from conventional flow dynamics. Larger $G/D$ promotes the formation of an LLE shear layer. An intriguing finding at $L/D = 5$ and $G/D = 0.1$ is the backward flow of fluid from the downstream region to the upper side of the cylinder. At $G/D = 0.3$, double-trailing-edge vortices emerge for larger $L/D$, with two distinct flow behaviours associated with two interactions between gap flow and wall recirculation. These interactions lead to different multiple flow separations. For $G/D = 0.9$, the secondary vortex (SV) from the plate wall induces the formation of a tertiary vortex from the lower side of the cylinder. Double-SVs are observed at $L/D = 5$. Frequency locking is observed in most cases, but is suppressed at $L/D = 10$ and $G/D = 0.9$, where competing shedding modes lead to two distinct evolutions of the SV.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Basley, J., Pastur, L., Lusseyran, F., Faure, T.M. & Delprat, N. 2011 Experimental investigation of global structures in an incompressible cavity flow using time-resolved PIV. Exp. Fluids 50 (4), 905918.CrossRefGoogle Scholar
Bearman, P.W. & Zdravkovich, M.M. 1978 Flow around a circular cylinder near a plane boundary. J. Fluid Mech. 89 (1), 3347.CrossRefGoogle Scholar
Bolis, A. 2013 Fourier spectral/hp element method: investigation of time-stepping and parallelisation strategies. PhD thesis. Citeseer.Google Scholar
Cantwell, C.D. et al. 2015 Nektar++: An open-source spectral/ h p element framework. Comput. Phys. Commun. 192, 205219.CrossRefGoogle Scholar
Chen, W., Ji, C., Alam, M.M., Xu, D. & Zhang, Z. 2022 Three-dimensional flow past a circular cylinder in proximity to a stationary wall. Ocean Engng 247, 110783.CrossRefGoogle Scholar
Cheng, H., Jiang, H., Chong, K.L., Zhou, Q., Liu, Y. & Lu, Z. 2022 The effect of surface roughness on the lagrangian coherent structures in turbulent Rayleigh–Bénard convection. Phys. Fluids 34 (11), 115134.CrossRefGoogle Scholar
Chiarini, A. & Auteri, F. 2023 Linear global and asymptotic stability analysis of the flow past rectangular cylinders moving along a wall. J. Fluid Mech. 966, A22.CrossRefGoogle Scholar
Chiarini, A., Gatti, D., Cimarelli, A. & Quadrio, M. 2022 a Structure of turbulence in the flow around a rectangular cylinder. J. Fluid Mech. 946, A35.CrossRefGoogle Scholar
Chiarini, A., Quadrio, M. & Auteri, F. 2022 b An almost subharmonic instability in the flow past rectangular cylinders. J. Fluid Mech. 950, A20.CrossRefGoogle Scholar
Chiarini, A., Quadrio, M. & Auteri, F. 2022 c On the frequency selection mechanism of the low- $Re$ flow around rectangular cylinders. J. Fluid Mech. 933, A44.CrossRefGoogle Scholar
Chiarini, A. & Quadrio, M. 2021 The turbulent flow over the barc rectangular cylinder: a DNS study. Flow Turbul. Combust. 107 (4), 875899.CrossRefGoogle Scholar
Chiarini, A., Quadrio, M. & Auteri, F. 2021 Linear stability of the steady flow past rectangular cylinders. J. Fluid Mech. 929, A36.CrossRefGoogle Scholar
Cimarelli, A., Corsini, R. & Stalio, E. 2024 Reynolds number effects in separating and reattaching flows with passive scalar transport. J. Fluid Mech. 984, A20.CrossRefGoogle Scholar
Cimarelli, A., Leonforte, A. & Angeli, D. 2018 a Direct numerical simulation of the flow around a rectangular cylinder at a moderately high Reynolds number. J. Wind Engng Ind. Aerodyn. 174, 3949.CrossRefGoogle Scholar
Cimarelli, A., Leonforte, A. & Angeli, D. 2018 b On the structure of the self-sustaining cycle in separating and reattaching flows. J. Fluid Mech. 857, 907936.CrossRefGoogle Scholar
Cimarelli, A., Leonforte, A., Angelis, D.E., Crivellini, E., A, & Angeli, D. 2019 a On negative turbulence production phenomena in the shear layer of separating and reattaching flows. Phys. Lett. A 383 (10), 10191026.CrossRefGoogle Scholar
Cimarelli, A., Leonforte, A., Angelis, D.E., Crivellini, E., A, & Angeli, D. 2019 b Resolved dynamics and subgrid stresses in separating and reattaching flows. Phys. Fluids 31 (9), 095101.CrossRefGoogle Scholar
Dong, S.C., Karniadakis, G.E. & Chryssostomidis, C. 2014 A robust and accurate outflow boundary condition for incompressible flow simulations on severely-truncated unbounded domains. J. Comput. Phys. 261, 83105.CrossRefGoogle Scholar
Dong, S.W., Huang, Y.X., Yuan, X.X. & Lozano-Durán, A. 2020 The coherent structure of the kinetic energy transfer in shear turbulence. J. Fluid Mech. 892, A22.CrossRefGoogle Scholar
Dong, Z.-X., Pan, C., Tong, F.-L. & Yuan, X.-X. 2024 Variation of vortical structures across shock-wave/turbulent boundary-layer interaction region in a compression ramp flow. Phys. Fluids 36 (5), 055105.CrossRefGoogle Scholar
Duan, F. & Wang, J.-J. 2024 Passive bionic motion of a flexible film in the wake of a circular cylinder: chaos and periodicity, flow–structure interactions and energy evolution. J. Fluid Mech. 986, A29.CrossRefGoogle Scholar
Fang, X. & Tachie, M.F. 2020 Spatio-temporal dynamics of flow separation induced by a forward-facing step submerged in a thick turbulent boundary layer. J. Fluid Mech. 892, A40.CrossRefGoogle Scholar
Feng, S., Tu, G., Yang, Q., Wang, B., Zhou, Q. & Chen, J. 2024 Stability analysis for high-speed boundary-layer flow with cavities. AIAA J. 62 (5), 17441754.CrossRefGoogle Scholar
Green, M.A., Rowley, C.W. & Haller, G. 2007 Detection of lagrangian coherent structures in three-dimensional turbulence. J. Fluid Mech. 572, 111120.CrossRefGoogle Scholar
Haller, G. 2001 Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Physica D 149 (4), 248277.CrossRefGoogle Scholar
Haller, G. & Yuan, G. 2000 Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D 147 (3-4), 352370.CrossRefGoogle Scholar
He, G.-S., Pan, C., Feng, L.-H., Gao, Q. & Wang, J.-J. 2016 Evolution of lagrangian coherent structures in a cylinder-wake disturbed flat plate boundary layer. J. Fluid Mech. 792, 274306.CrossRefGoogle Scholar
He, G.S., Pan, C. & Wang, J.J. 2013a Dynamics of vortical structures in cylinder/wall interaction with moderate gap ratio. J. Fluid Struct. 43, 100109.CrossRefGoogle Scholar
He, G.S., Wang, J.j & Pan, C. 2013 b Initial growth of a disturbance in a boundary layer influenced by a circular cylinder wake. J. Fluid Mech. 718, 116130.CrossRefGoogle Scholar
He, G.-S., Wang, J.-J., Pan, C., Feng, L.-H., Gao, Q. & Rinoshika, A. 2017 Vortex dynamics for flow over a circular cylinder in proximity to a wall. J. Fluid Mech. 812, 698720.CrossRefGoogle Scholar
Hourigan, K., Thompson, M.C. & Tan, B.T. 2001 Self-sustained oscillations in flows around long blunt plates. J. Fluids Struct. 15 (3-4), 387398.CrossRefGoogle Scholar
Jiang, H., Hu, X., Cheng, L. & Zhou, T. 2022 Direct numerical simulation of the turbulent kinetic energy and energy dissipation rate in a cylinder wake. J. Fluid Mech. 946, A11.CrossRefGoogle Scholar
Jiang, H., Ju, X., Guo, Z. & Wang, L. 2024 Turbulent wake characteristics for a circular cylinder in proximity to a moving wall. J. Fluid Mech. 983, A18.CrossRefGoogle Scholar
Jiménez, J., Del, A., Juan, C. & Flores, O. 2004 The large-scale dynamics of near-wall turbulence. J. Fluid Mech. 505, 179199.CrossRefGoogle Scholar
Ju, Xg, An, H., Cheng, L. & Tong, F. 2020 Modes of synchronisation around a near-wall oscillating cylinder in streamwise directions. J. Fluid Mech. 893, A8.CrossRefGoogle Scholar
Ju, X. & Jiang, H. 2024 Two-and three-dimensional wake transitions of a rectangular cylinder and resultant hydrodynamic effects. J. Fluid Mech. 989, A6.CrossRefGoogle Scholar
Kukreti, S. & Singh, N.K. 2023 Aspect ratio effect on flow past an elliptical cylinder near a moving wall. Phys. Fluids 35 (6), 063606.CrossRefGoogle Scholar
Lei, C., Cheng, L., Armfield, S.W. & Kavanagh, K. 2000 Vortex shedding suppression for flow over a circular cylinder near a plane boundary. Ocean Engng 27 (10), 11091127.CrossRefGoogle Scholar
Lei, C., Cheng, L. & Kavanagh, K. 1999 Re-examination of the effect of a plane boundary on force and vortex shedding of a circular cylinder. J. Wind Engng Ind. Aerodyn. 80 (3), 263286.CrossRefGoogle Scholar
Li, J., Wang, B., Qiu, X., Wu, J., Zhou, Q., Fu, S. & Liu, Y. 2022 a Three-dimensional vortex dynamics and transitional flow induced by a circular cylinder placed near a plane wall with small gap ratios. J. Fluid Mech. 953, A2.CrossRefGoogle Scholar
Li, J.-H., Wang, B.-F., Qiu, X., Wu, J.-Z., Zhou, Q., Fu, S.-X. & Liu, Y.-L. 2022 b The dynamics of cylinder-wake/boundary-layer interaction revealed by turbulent transports. Phys. Fluids 34 (11), 115136.CrossRefGoogle Scholar
Li, J.-H., Wang, B.-F., Qiu, X., Zhou, Q., Fu, S.-X. & Liu, Y.-L. 2024 a Turbulent transports in the flow around a rectangular cylinder with different aspect ratios. Ocean Engng 301, 117512.CrossRefGoogle Scholar
Li, J.-H., Wang, B.-F., Qiu, X., Zhou, Q., Fu, S.-X. & Liu, Y.-L. 2024 b Vortex dynamics and boundary layer transition in flow around a rectangular cylinder with different aspect ratios at medium Reynolds number. J. Fluid Mech. 982, A5.CrossRefGoogle Scholar
Li, Z., Zhang, D., Liu, Y., Wu, C. & Gao, N. 2020 Effect of periodic perturbations on the turbulence statistics in a backward-facing step flow. Phys. Fluids 32 (7), 075116.CrossRefGoogle Scholar
Li, Z.-F., Li, J.-H., Wu, J.-Z., Chong, K.-L., Wang, B.-F., Zhou, Q. & Liu, Y.-L. 2023 Numerical simulation of flow instability induced by a fixed cylinder placed near a plane wall in oscillating flow. Ocean Engng 288, 116115.CrossRefGoogle Scholar
Lin, W.J., Lin, C., Hsieh, S.C. & Dey, S. 2009 Flow characteristics around a circular cylinder placed horizontally above a plane boundary. J. Engng Mech. 135 (7), 697716.Google Scholar
Liu, Y., Wang, Y., Li, J., Tao, Y. & Qiu, X. 2022 Experimental study on the large-scale turbulence structure dynamics of a counterflowing wall jet. Exp. Fluids 63 (10), 159.CrossRefGoogle Scholar
Ma, L.-Q., Feng, L.-H., Pan, C., Gao, Q. & Wang, J.-J. 2015 Fourier mode decomposition of PIV data. China Technol. Sci. 58 (11), 19351948.CrossRefGoogle Scholar
Ma, X. & Schröder, A. 2017 Analysis of flapping motion of reattaching shear layer behind a two-dimensional backward-facing step. Phys. Fluids 29 (11), 115104.CrossRefGoogle Scholar
Ma, X., Tang, Z. & Jiang, N. 2020 Eulerian and lagrangian analysis of coherent structures in separated shear flow by time-resolved particle image velocimetry. Phys. Fluids 32 (6), 065101.CrossRefGoogle Scholar
Mahmoodi-Jezeh, S.V. & Wang, B.-C. 2020 Direct numerical simulation of turbulent flow through a ribbed square duct. J. Fluid Mech. 900, A18.CrossRefGoogle Scholar
Maiti, D.K. 2012 Numerical study on aerodynamic characteristics of rectangular cylinders near a wall. Ocean Engng 54, 251260.CrossRefGoogle Scholar
Malavasi, S. & Blois, G. 2012 Wall effects on the flow structure around a rectangular cylinder. Meccanica 47 (4), 805815.CrossRefGoogle Scholar
Mills, R., Sheridan, J. & Hourigan, K. 2002 Response of base suction and vortex shedding from rectangular prisms to transverse forcing. J. Fluid Mech. 461, 2549.CrossRefGoogle Scholar
Mills, R., Sheridan, J., Hourigan, K. & Welsh, M.C. 1995 The mechanism controlling vortex shedding from rectangular bluff bodies. In Proceeding Twelfth Australas. Fluid Mechanica Conference, pp. 227230.Google Scholar
Moser, R.D. & Moin, P. 1987 The effects of curvature in wall-bounded turbulent flows. J. Fluid Mech. 175, 479510.CrossRefGoogle Scholar
Moxey, D. et al. 2020 Nektar++: enhancing the capability and application of high-fidelity spectral/hp element methods. Comput. Phys. Commun. 249, 107110.CrossRefGoogle Scholar
Nakamura, Y. & Nakashima, M. 1986 Vortex excitation of prisms with elongated rectangular, h and [vdash] cross-sections. J. Fluid Mech. 163, 149169.CrossRefGoogle Scholar
Nakamura, Y., Ohya, Y. & Tsuruta, H. 1991 Experiments on vortex shedding from flat plates with square leading and trailing edges. J. Fluid Mech. 222, 437447.CrossRefGoogle Scholar
Naudascher, E. & Rockwell, D. 1994 Flow-induced vibrations: An engineering guide.Google Scholar
Okajima, A. 1982 Strouhal numbers of rectangular cylinders. J. Fluid Mech. 123, 379398.CrossRefGoogle Scholar
Ouro, P., Muhawenimana, V. & Wilson, C.A. 2019 Asymmetric wake of a horizontal cylinder in close proximity to a solid boundary for reynolds numbers in the subcritical turbulence regime. Phys. Rev. Fluids 4 (10), 104604.CrossRefGoogle Scholar
Ovchinnikov, V., Piomelli, U. & Choudhari, M.M. 2006 Numerical simulations of boundary-layer transition induced by a cylinder wake. J. Fluid Mech. 547, 413441.CrossRefGoogle Scholar
Ozono, S., Ohya, Y., Nakamura, Y. & Nakayama, R. 1992 Stepwise increase in the Strouhal number for flows around flat plates. Intl J. Numer. Meth. Fluids 15 (9), 10251036.CrossRefGoogle Scholar
Pan, C., Wang, J., Wang, J. & Sun, M. 2017 Dynamics of an unsteady stagnation vortical flow via dynamic mode decomposition analysis. Exp. Fluids 58 (3), 119.CrossRefGoogle Scholar
Price, S.J., Sumner, D., Smith, J.G., Leong, K. & Paidoussis, M.P. 2002 Flow visualization around a circular cylinder near to a plane wall. J. Fluid Struct. 16 (2), 175191.CrossRefGoogle Scholar
Ren, C., Liu, Z., Cheng, L., Tong, F. & Xiong, C. 2023 Three-dimensional wake transitions of steady flow past two side-by-side cylinders. J. Fluid Mech. 972, A17.CrossRefGoogle Scholar
Sarkar, S. & Sarkar, S. 2009 Large-eddy simulation of wake and boundary layer interactions behind a circular cylinder. Trans. ASME J. Fluids Engng 131 (9), 091201.CrossRefGoogle Scholar
Sarkar, S. & Sarkar, S. 2010 Vortex dynamics of a cylinder wake in proximity to a wall. J. Fluid Struct. 26 (1), 1940.CrossRefGoogle Scholar
Schmid, P.J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.CrossRefGoogle Scholar
Shadden, S.C., Astorino, M. & Gerbeau, J.-F. 2010 Computational analysis of an aortic valve jet with Lagrangian coherent structures. Chaos 20 (1), 017512.CrossRefGoogle ScholarPubMed
Shadden, S.C., Dabiri, J.O. & Marsden, J.E. 2006 Lagrangian analysis of fluid transport in empirical vortex ring flows. Phys. Fluids 18 (4), 047105.CrossRefGoogle Scholar
Squire, L.C. 1989 Interactions between wakes and boundary-layers. Prog. Aerosp. Sci. 26 (3), 261288.CrossRefGoogle Scholar
Tan, B., Thompson, M. & Hourigan, K. 2004 Flow past rectangular cylinders: receptivity to transverse forcing. J. Fluid Mech. 515, 3362.CrossRefGoogle Scholar
Tan, B.T., Thompson, M. & Hourigan, K. 1998 Simulated flow around long rectangular plates under cross flow perturbations. Intl J. Fluid Dyn. 2, 1.Google Scholar
Tanweer, S., Dewan, A. & Sanghi, S. 2021 Three-dimensional wake transitions past a rectangular cylinder placed near a moving wall: influence of aspect and gap ratios. Ocean Engng 219, 108288.CrossRefGoogle Scholar
Tanweer, S., Dewan, A. & Sanghi, S. 2022 Flow dynamics in the wake of a rectangular cylinder near a moving wall. Ocean Engng 266, 112966.CrossRefGoogle Scholar
Tian, R., Xu, Y., Duan, F. & Wang, J.-J. 2023 The deformation and dynamics of a flexible plate with attached mass blocks mounted behind a circular cylinder. J. Fluid Struct. 122, 103979.CrossRefGoogle Scholar
Wang, J., He, G. & Wang, J. 2024 Revisiting the wake-triggered secondary vortices over a circular-cylinder/flat-plate configuration. Phys. Fluids 36 (2), 021704.CrossRefGoogle Scholar
Wang, J., Wang, J. & Kim, K.C. 2019 Wake/shear layer interaction for low-Reynolds-number flow over multi-element airfoil. Exp. Fluids 60 (1), 124.CrossRefGoogle Scholar
Wang, J.-S., Feng, L.-H., Wang, J.-j. & Li, T. 2018 Görtler vortices in low-Reynolds-number flow over multi-element airfoil. J. Fluid Mech. 835, 898935.CrossRefGoogle Scholar
Wang, J.S., Gao, Q., Wei, R.J. & Wang, J.J. 2017 Experimental study on the effect of an artificial cardiac valve on the left ventricular flow. Exp. Fluids 58 (9), 117.CrossRefGoogle Scholar
Wang, J.-S. & Wang, J.-J. 2021 a Vortex dynamics for flow around the slat cove at low Reynolds numbers. J. Fluid Mech. 919, A27.CrossRefGoogle Scholar
Wang, J.-S. & Wang, J.-J. 2021 b Wake-induced transition in the low-Reynolds-number flow over a multi-element airfoil. J. Fluid Mech. 915, A28.CrossRefGoogle Scholar
Wang, J.-S., Wu, J. & Wang, J.-J. 2023 Wake-triggered secondary vortices over a cylinder/airfoil configuration. Exp. Fluids 64 (1), 6.CrossRefGoogle Scholar
Wang, L., Pan, C., Wang, J. & Gao, Q. 2022 a Statistical signatures of component wall-attached eddies in proper orthogonal decomposition modes of a turbulent boundary layer. J. Fluid Mech. 944, A26.CrossRefGoogle Scholar
Wang, L.-W., Pan, C. & Wang, J.-J. 2022 b Wall-attached and wall-detached eddies in proper orthogonal decomposition modes of a turbulent channel flow. Phys. Fluids 34 (9), 095124.CrossRefGoogle Scholar
Wang, X.K. & Tan, S.K. 2008 Near-wake flow characteristics of a circular cylinder close to a wall. J. Fluid Struct. 24 (5), 605627.CrossRefGoogle Scholar
Zdravkovich, M.M. 1985 Forces on a circular cylinder near a plane wall. Appl. Ocean Res. 7 (4), 197201.CrossRefGoogle Scholar
Zhang, L.-R., Li, J.-H., Wang, Y.-Z., Qiu, X., Fu, Y. & Liu, Y.-L. 2024 Vortex dynamics induced by a finite wall-mounted cylinder with various corner shapes. Phys. Fluids 36 (7), 075195.CrossRefGoogle Scholar
Zhang, Z., Kareem, A., Xu, F. & Jiang, H. 2023 Global instability and mode selection in flow fields around rectangular prisms. J. Fluid Mech. 955, A19.CrossRefGoogle Scholar
Zhou, J., Qiu, X., Li, J. & Liu, Y. 2022 Vortex evolution of flow past the near-wall circular cylinder immersed in a flat-plate turbulent boundary layer. Ocean Engng 260, 112011.CrossRefGoogle Scholar
Zhou, J., Qiu, X., Li, J., Wang, B., Zhou, Q. & Liu, Y. 2024 The experimental investigation on wake dynamics of flow around a circular cylinder with the splitter plate. J. Fluid Struct. 127, 104130.CrossRefGoogle Scholar
Zhou, Y., Nagata, K., Sakai, Y., Ito, Y. & Hayase, T. 2015 On the evolution of the invariants of the velocity gradient tensor in single-square-grid-generated turbulence. Phys. Fluids 27 (7), 075107.CrossRefGoogle Scholar
Zhou, Y., Nagata, K., Sakai, Y. & Watanabe, T. 2019 Extreme events and non-Kolmogorov spectra in turbulent flows behind two side-by-side square cylinders. J. Fluid Mech. 874, 677698.CrossRefGoogle Scholar