Hostname: page-component-857557d7f7-nbs69 Total loading time: 0 Render date: 2025-12-08T16:45:55.143Z Has data issue: false hasContentIssue false

A new upward-convective short-wave instability mode in gas-sheared falling liquid films

Published online by Cambridge University Press:  02 December 2025

Misa Ishimura*
Affiliation:
Department of Mechanical Engineering, Yokohama National University , Kanagawa 240-8501, Japan
Sophie Mergui
Affiliation:
Sorbonne Université, CNRS, FAST, Université Paris-Saclay, Orsay 91405, France
Christian Ruyer-Quil
Affiliation:
CNRS, LOCIE, Université Savoie Mont Blanc, Le Bourget du Lac 73376, France
Georg Friedrich Dietze*
Affiliation:
Université Paris-Saclay, CNRS, FAST, Orsay 91405, France
*
Corresponding authors: Misa Ishimura, ishimura-misa-kx@ynu.ac.jp; Georg Friedrich Dietze, georg.dietze@cnrs.fr
Corresponding authors: Misa Ishimura, ishimura-misa-kx@ynu.ac.jp; Georg Friedrich Dietze, georg.dietze@cnrs.fr

Abstract

We investigate a short-wave instability mode recently identified via temporal stability analysis in weakly inclined falling liquid films sheared by a confined turbulent counter-current gas flow (Ishimura et al. J. Fluid Mech. vol. 971, 2023, p. A37). We perform spatio-temporal linear stability calculations based on the Navier–Stokes equations in the liquid film and the Reynolds-averaged Navier–Stokes equations in the gas, and compare these with our own experiments. We find that the short-wave instability mode is always upward-convective. The range of unstable group velocities is very wide and largely coincides with negative values of the wave velocity. Turbulence affects this mode both through the level of gas shear stress imparted and via the shape of the primary-flow gas velocity profile. Beyond a critical value of the counter-current gas flow rate, the short-wave mode merges with the long-wave Kapitza instability mode. The thus obtained merged mode is unstable for group velocities spanning from large negative to large positive values, i.e. it is absolute. The onset of the short-wave mode is precipitated by decreasing the channel height and inclination angle, and by increasing the liquid Reynolds number or the gas-to-liquid dynamic viscosity ratio. For vertically falling liquid films, merging occurs before the short-wave mode can become unstable on its own. Nonetheless, the ability to generate upward-travelling ripples is endowed to the merged mode. Preliminary calculations neglecting the linear perturbation of the turbulent viscosity suggest that three-dimensional perturbations could be more unstable than two-dimensional ones.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aktershev, S.P., Alekseenko, S.V. & Tsvelodub, O.Y. 2022 Theoretical modeling of fluid dynamics and heat transfer in wavy liquid films under complex flow conditions. Thermophys. Aeromech. 29 (1), 134.10.1134/S0869864322010012CrossRefGoogle Scholar
Alekseenko, S.V., Cherdantsev, A.V., Heinz, O.M., Kharlamov, S.M. & Markovich, D.M. 2014 Analysis of spatial and temporal evolution of disturbance waves and ripples in annular gas–liquid flow. Intl J. Multiphase Flow 67, 122134.10.1016/j.ijmultiphaseflow.2014.07.009CrossRefGoogle Scholar
Bankoff, S.G. & Lee, S.C. 1986 A Critical Review of the Flooding Literature. vol. 2, pp. 95180.Springer.Google Scholar
Barmak, I., Gelfgat, A.Y., Ullmann, A. & Brauner, N. 2017 On the Squire’s transformation for stratified two-phase flows in inclined channels. Intl J. Multiphase Flow 88, 142151.10.1016/j.ijmultiphaseflow.2016.09.018CrossRefGoogle Scholar
Boomkamp, P.A.M. & Miesen, R.H.M. 1996 Classification of instabilities in parallel two-phase flow. Intl J. Multiphase Flow 22, 6788.10.1016/S0301-9322(96)90005-1CrossRefGoogle Scholar
Brevdo, L., Laure, P., Dias, F. & Bridges, T.J. 1999 Linear pulse structure and signalling in a film flow on an inclined plane. J. Fluid Mech. 396, 3771.10.1017/S0022112099005790CrossRefGoogle Scholar
Briggs, R.J. 1964 Electron-Stream Interaction with Plasmas. MIT Press.10.7551/mitpress/2675.001.0001CrossRefGoogle Scholar
Brooke Benjamin, T. 1957 Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2, 554574.10.1017/S0022112057000373CrossRefGoogle Scholar
Brooke Benjamin, T. 1959 Shearing flow over a wavy boundary. J. Fluid Mech. 6, 161205.10.1017/S0022112059000568CrossRefGoogle Scholar
Burdairon, F. & Magnaudet, J. 2023 A combined vof-rans approach for studying the evolution of incipient two-dimensional wind-driven waves over a viscous liquid. Eur. J. Mech.-B/Fluids 102, 150167.10.1016/j.euromechflu.2023.08.001CrossRefGoogle Scholar
Camassa, R., Ogrosky, H.R. & Olander, J. 2017 Viscous film-flow coating the interior of a vertical tube. part 2. air-driven flow. J. Fluid Mech. 825, 10561090.10.1017/jfm.2017.409CrossRefGoogle Scholar
Dietze, G.F. 2016 On the Kapitza instability and the generation of capillary waves. J. Fluid Mech. 789, 368401.10.1017/jfm.2015.736CrossRefGoogle Scholar
Dietze, G.F. 2022 Falling liquid films in narrow geometries and other thin film flows, Université Paris-Saclay, HAL Id tel-04437816., Habilitation thesis:.Google Scholar
Doedel, E.J. & Oldeman, B.E. 2009 AUTO07p: Continuation and Bifurcation Software for Ordinary Differential Equations. Montreal Concordia University.Google Scholar
Drosos, E.I.P., Paras, S.V. & Karabelas, A.J. 2006 Counter-current gas–liquid flow in a vertical narrow channel - liquid film characteristics and flooding phenomena. Intl J. Multiphase Flow 32, 5181.10.1016/j.ijmultiphaseflow.2005.07.005CrossRefGoogle Scholar
Fair, J.R. & Bravo, J.L. 1990 Distillation columns containing structured packing. Chem. Engng Prog. 86 (1), 1929.Google Scholar
Floryan, J.M., Davis, S.H. & Kelly, R.E. 1987 Instabilities of a liquid film flowing down a slightly inclined plane. Phys. Fluids 30 (4), 983989.10.1063/1.866285CrossRefGoogle Scholar
Hanratty, T.J. & Engen, J.M. 1957 Interaction between a turbulent air stream and a moving water surface. AIChE J. 3 (3), 299304.10.1002/aic.690030303CrossRefGoogle Scholar
Huerre, P. & Monkewitz, P.A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473537.10.1146/annurev.fl.22.010190.002353CrossRefGoogle Scholar
Ishimura, M., Mergui, S., Ruyer-Quil, C. & Dietze, G.F. 2023 Gas-sheared falling liquid films beyond the absolute instability limit. J. Fluid Mech. 971, A37.10.1017/jfm.2023.670CrossRefGoogle Scholar
Kapitza, P.L. 1948 Wave flow of thin layer of viscous fluid (in Russian). Zhurn. Eksper. Teor. Fiz. 18 (1), 328.Google Scholar
Kofman, N., Mergui, S. & Ruyer-Qui, C. 2014 Three-dimensional instabilities of quasi-solitary waves in a falling liquid film. J. Fluid Mech. 757, 854887.10.1017/jfm.2014.506CrossRefGoogle Scholar
Kofman, N., Mergui, S. & Ruyer-Quil, C. 2017 Characteristics of solitary waves on a falling liquid film sheared by a turbulent counter-current gas flow. Intl J. Multiphase Flow 95, 2234.10.1016/j.ijmultiphaseflow.2017.05.007CrossRefGoogle Scholar
Kushnir, R., Barmak, I., Ullmann, A. & Brauner, N. 2021 Stability of gravity-driven thin-film flow in the presence of an adjacent gas phase. Intl J. Multiphase Flow 135, 103443.10.1016/j.ijmultiphaseflow.2020.103443CrossRefGoogle Scholar
Lavalle, G., Li, Y., Mergui, S., Grenier, N. & Dietze, G.F. 2019 Suppression of the Kapitza instability in confined falling liquid films. J. Fluid Mech. 860, 608639.10.1017/jfm.2018.902CrossRefGoogle Scholar
Liu, J. & Gollub, J.P. 1994 Solitary wave dynamics of film flows. Phys. Fluids 6 (5), 17021712.10.1063/1.868232CrossRefGoogle Scholar
McCready, M.J. & Chang, H.-C. 1994 Formation of large disturbances on sheared and falling liquid films. Chem. Engng Commun. 141–142 (1), 347358.Google Scholar
Mergui, S., Lavalle, G., Li, Y., Grenier, N. & Dietze, G.F. 2023 Nonlinear dynamics of strongly-confined gas-sheared falling liquid films. J. Fluid Mech. 954, A19.10.1017/jfm.2022.967CrossRefGoogle Scholar
Miesen, R. & Boersma, B.J. 1995 Hydrodynamic stability of a sheared liquid film. J. Fluid Mech. 301, 175202.10.1017/S0022112095003855CrossRefGoogle Scholar
Miles, J.W. 1957 On the generation of surface waves by shear flows. J. Fluid Mech. 3, 185204.10.1017/S0022112057000567CrossRefGoogle Scholar
Náraigh, L.Ó., Spelt, P.D.M., Matar, O.K. & Zaki, T.A. 2011 Interfacial instability in turbulent flow over a liquid film in a channel. Intl J. Multiphase Flow 37 (7), 812830.10.1016/j.ijmultiphaseflow.2011.02.010CrossRefGoogle Scholar
Náraigh, L.Ó., Spelt, P.D.M. & Shaw, S.J. 2013 Absolute linear instability in laminar and turbulent gas–liquid two-layer channel flow. J. Fluid Mech. 714, 5894.10.1017/jfm.2012.452CrossRefGoogle Scholar
Nusselt, W. 1916 Die oberfl’achenkondensation des Wasserdampfes. VDI-Zeitschrift 60, 541546.Google Scholar
Orszag, S.A. 1971 Accurate solution of the Orr–Sommerfeld stability equation. J. Fluid Mech. 50 (4), 689703.10.1017/S0022112071002842CrossRefGoogle Scholar
Özgen, S., Carbonaro, M. & Sarma, G.S.R. 2002 Experimental study of wave characteristics on a thin layer of de/anti-icing fluid. Phys. Fluids 14 (10), 33913402.10.1063/1.1501282CrossRefGoogle Scholar
Prandtl, L. 1925 Bericht über Untersuchungen zur ausgebildeten turbulenz. Zeitschrift für Angewandte Mathematik Und Mechanik 5, 136139.10.1002/zamm.19250050212CrossRefGoogle Scholar
Samanta, A. 2020 Optimal disturbance growth in shear-imposed falling film. AIChE J. 66 (5), 00011541.10.1002/aic.16906CrossRefGoogle Scholar
Schmidt, P., Náraigh, L.Ó., Lucquiaud, M. & Valluri, P. 2016 Linear and nonlinear instability in vertical counter-current laminar gas–liquid flows. Phys. Fluids 28, 042102.10.1063/1.4944617CrossRefGoogle Scholar
Squire, H.B. 1933 On the stability for three-dimensional disturbances of viscous fluid flow between parallel walls. Proc. R. Soc. Lond. A 142, 621628.Google Scholar
Tilley, B.S., Davis, S.H. & Bankoff, S.G. 1994 Nonlinear long-wave stability of superposed fluids in an inclined channel. J. Fluid Mech. 277, 5583.10.1017/S0022112094002685CrossRefGoogle Scholar
Trifonov, Y.Y. 2010 Flooding in two-phase counter-current flows: numerical investigation of the gas–liquid wavy interface using the Navier–Stokes equations. Intl J. Multiphase Flow 36, 549557.10.1016/j.ijmultiphaseflow.2010.03.006CrossRefGoogle Scholar
Trifonov, Y.Y. 2017 Instabilities of a gas–liquid flow between two inclined plates analyzed using the Navier–Stokes equations. Intl J. Multiphase Flow 95, 144154.10.1016/j.ijmultiphaseflow.2017.05.011CrossRefGoogle Scholar
Trifonov, Y.Y. 2019 Nonlinear wavy regimes of a gas–liquid flow between two inclined plates analyzed using the Navier–Stokes equations. Intl J. Multiphase Flow 112, 170182.10.1016/j.ijmultiphaseflow.2018.12.012CrossRefGoogle Scholar
Tseluiko, D. & Kalliadasis, S. 2011 Nonlinear waves in counter-current gas–liquid film flow. J. Fluid Mech. 673, 1959.10.1017/S002211201000618XCrossRefGoogle Scholar
Valluri, P., Matar, O.K., Hewitt, G.F. & Mendes, M.A. 2005 Thin film flow over structured packings at moderate Reynolds numbers. Chem. Engng Sci. 60, 19651975.10.1016/j.ces.2004.12.008CrossRefGoogle Scholar
Valluri, P., Náraigh, L.Ó., Ding, H. & Spelt, P.D.M. 2010 Linear and nonlinear spatio-temporal instability in laminar two-layer flows. J. Fluid Mech. 656, 458480.10.1017/S0022112010001230CrossRefGoogle Scholar
Vargaftik, N.B., Volkov, B.N. & Voljak, L.D. 1983 International tables of the surface tension of water. J. Phys. Chem. Ref. Data 12 (3), 817820.10.1063/1.555688CrossRefGoogle Scholar
Vasques, J., Cherdantsev, A., Cherdantsev, M., Isaenkov, S. & Hann, D. 2018 Comparison of disturbance wave parameters with flow orientation in vertical annular gas–liquid flows in a small pipe. Exp. Therm. Fluid Sci. 97, 484501.10.1016/j.expthermflusci.2018.03.020CrossRefGoogle Scholar
Vellingiri, R., Tseluiko, D. & Kalliadasis, S. 2015 Absolute and convective instabilities in counter-current gas–liquid film flows. J. Fluid Mech. 763, 166201.10.1017/jfm.2014.667CrossRefGoogle Scholar
Vlachos, N.A., Paras, S.V., Mouza, A.A. & Karabelas, A.J. 2001 Visual observations of flooding in narrow rectangular channels. Intl J. Multiphase Flow 27, 14151430.10.1016/S0301-9322(01)00009-XCrossRefGoogle Scholar
Yih, C.-S. 1955 Stability of two-dimensional parallel flows for three-dimensional disturbances. Q. Appl. Maths 12 (4), 434435.10.1090/qam/65330CrossRefGoogle Scholar
Yih, C.S. 1963 Stability of liquid flow down an inclined plane. Phys. Fluids 6 (3), 321334.10.1063/1.1706737CrossRefGoogle Scholar
Zapke, A. & Kröger, D.G. 2000 Countercurrent gas–liquid flow in inclined and vertical ducts - i: flow patterns, pressure drop characteristics and flooding. Intl J. Multiphase Flow 26, 14391455.10.1016/S0301-9322(99)00097-XCrossRefGoogle Scholar
Zhang, J., Hector, A., Rabaud, M. & Moisy, F. 2023 Wind-wave growth over a viscous liquid. Phys. Rev. Fluids 8 (10), 104801.10.1103/PhysRevFluids.8.104801CrossRefGoogle Scholar