Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-28T07:00:25.972Z Has data issue: false hasContentIssue false

Noise generated by airfoil profiles placed in a uniform laminar flow

Published online by Cambridge University Press:  20 April 2006

H. Arbey
Affiliation:
Laboratoire de Mécanique des Fluides, associé au CNRS. Ecole Centrale de Lyon, 69130 Ecully, France
J. Bataille
Affiliation:
Laboratoire de Mécanique des Fluides, associé au CNRS. Ecole Centrale de Lyon, 69130 Ecully, France

Abstract

The present paper is devoted to the experimental study of the noise generated by an airfoil profile placed in a uniform laminar flow. The far-field acoustic spectrum is shown to be composed of a broadband contribution around frequency fs and a discrete contribution at equidistant frequencies fn, which follow power laws of the forms fsU1.5 and fnU0.85. Both contributions can be accounted for by a simple model derived from the original suggestions of Tam (1974) and Fink (1975). It is essentially assumed that the diffraction of the Tollmien-Schlichting instabilities by the trailing edge generates acoustic waves which propagate in the far field and also trigger an aeroacoustic feedback loop, whose length is equal to the distance between the trailing edge and the maximum velocity point of the airfoil.

Type
Research Article
Copyright
© 1983 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arbey, H. 1981 Contribution à l’étude des mécanismes de l’émission sonore de profils aérodynamiques placés dans des écoulements sains ou perturbés. Thèse de Doctorat ès Sciences, Université Claude Bernard, Lyon I.
Archibald, F. S. 1975 The laminar boundary layer instability excitation of an acoustic resonance J. Sound Vib. 38, 387402.Google Scholar
Fathy, A., Rashed, M. I. & Lumsdaine, E. 1977 A theoretical investigation of laminar wakes behind airfoils and the resulting noise pattern J. Sound Vib. 50, 133144.Google Scholar
Ffowcs Williams, J. E. & Hall, L. H. 1970 Aerodynamic sound generation by turbulent flow in the vicinity of a scattering half plane J. Fluid Mech. 40, 657670.Google Scholar
Fink, M. R. 1975 Prediction of airfoil tone frequencies J. Aircraft 12, 118120.Google Scholar
Gaudriot, L., Hellion, A., Beguet, B. & Arbey, H. 1982 Analyse du bruit de profil par réseaux de capteurs proches ou lointains Rev. d'Acoust. 63, 208210.Google Scholar
Henry, C. 1975 Solution numérique par une méthode de singularités du problème de l’écoulement compressible sur des surfaces de courant axi-symétriques. Thèse de Docteur Ingénieur, Université Claude Bernard, Lyon I.
Howe, M. S. 1978 A review of the theory of trailing edge noise J. Sound Vib. 61, 437465.Google Scholar
Longhouse, R. E. 1977 Vortex shedding noise of low tip speed, axial flow fans J. Sound Vib. 53, 2546.Google Scholar
Mari, C., Jeandel, D. & Mathieu, J. 1976 Méthode de calcul de couche limite turbulente compressible avec transfert de chaleur Intl J. Heat Mass Transfer 19, 893899.Google Scholar
Obremski, H. J., Morkovin, M. V., Landahl, M., Wazzan, A. R., Okamura, T. T. & Smith, A. M. O. 1969 A portfolio of stability characteristics of incompressible boundary layers. AGARDograph 134.Google Scholar
Paterson, R. W., Vogt, P. G., Fink, M. R. & Munch, C. L. 1972 Vortex noise of isolated airfoils. AIAA Paper 72–656.Google Scholar
Schlinker, R. H., Fink, M. R. & Amiet, R. K. 1976 Vortex noise from non rotating cylinders and airfoils. AIAA Paper 76–81.Google Scholar
Sunyach, M., Arbey, H., Robert, D., Bataille, J. & COMTE-BELLOT, G. 1973 Correlations between far-field acoustic pressure and flow characteristics for a single airfoil. AGARD Conf. 131, Noise Mechanisms, Paper 5.Google Scholar
Tam, C. K. W. 1974 Discrete tones of isolated airfoils J. Acoust. Soc. Am. 55, 11731177.Google Scholar
Wright, S. E. 1976 The acoustic spectrum of axial flow machines J. Sound Vib. 45, 165223.Google Scholar
Yu, J. C. & Tam, C. K. W. 1977 Experimental investigation of the trailing edge noise mechanism AIAA J. 16, 10461052.Google Scholar