Skip to main content Accessibility help
×
Home

Non-axisymmetric flows in a differential-disk rotating system

  • Tony Vo (a1), Luca Montabone (a2), Peter L. Read (a2) and Gregory J. Sheard (a1)

Abstract

The non-axisymmetric structure of an unstable Stewartson shear layer generated via a differential rotation between flush disks and a cylindrical enclosure is investigated numerically using both three-dimensional direct numerical simulation and a quasi-two-dimensional model. Previous literature has only considered the depth-independent quasi-two-dimensional model due to its low computational cost. The three-dimensional model implemented here highlights the supercritical instability responsible for the polygonal deformation of the shear layer in the linear and nonlinear growth regimes and reveals that linear stability analysis is capable of accurately determining the preferred azimuthal wavenumber for flow conditions near the onset of instability. This agreement is lost for sufficiently forced flows where nonlinear effects encourage the coalescence of vortices towards lower-wavenumber structures. Time-dependent flows are found for large Reynolds numbers defined based on the Stewartson layer thickness and azimuthal velocity differential. However, this temporal behaviour is not solely characterized by Reynolds number but is rather a function of both the Rossby and Ekman numbers. At high Ekman and Rossby numbers, unsteady flow emerges through a small-scale azimuthal destabilization of the axial jets within the Stewartson layers; at low Ekman numbers, unsteady flow emerges through a modulation in the strength of one of the axial vortices rolled up by non-axisymmetric instability of the Stewartson layer.

Copyright

Corresponding author

Email address for correspondence: Greg.Sheard@monash.edu

Footnotes

Hide All

Present address: Space Science Institute, Boulder, CO 80301, USA.

Footnotes

References

Hide All
Afanasyev, Y. D., Rhines, P. B. & Lindahl, E. G. 2008 Emission of inertial waves by baroclinically unstable flows: laboratory experiments with altimetric imaging velocimetry. J. Atmos. Sci. 65 (1), 250262.
Aguiar, A. C. B.2008 Instabilities of a shear layer in a barotropic rotating fluid. PhD thesis, University of Oxford.
Aguiar, A. C. B., Read, P. L., Wordsworth, R. D., Salter, T. & Hiro Yamazaki, Y. 2010 A laboratory model of Saturn’s north polar hexagon. Icarus 206 (2), 755763.
Bergeron, K., Coutsias, E. A., Lynov, J. P. & Nielsen, A. H. 2000 Dynamical properties of forced shear layers in an annular geometry. J. Fluid Mech. 402 (1), 255289.
Bergmann, R., Tophøj, L., Homan, T. A. M., Hersen, P., Andersen, A. & Bohr, T. 2011 Polygon formation and surface flow on a rotating fluid surface. J. Fluid Mech. 679 (1), 415431.
Blackburn, H. M., Barkley, D. & Sherwin, S. J. 2008 Convective instability and transient growth in flow over a backward-facing step. J. Fluid Mech. 603, 271304.
Blackburn, H. M. & Sherwin, S. J. 2004 Formulation of a Galerkin spectral element–Fourier method for three-dimensional incompressible flows in cylindrical geometries. J. Comput. Phys. 197 (2), 759778.
Boisson, J., Cébron, D., Moisy, F. & Cortet, P.-P. 2012 Earth rotation prevents exact solid-body rotation of fluids in the laboratory. Europhys. Lett. 98 (5), 59002.
Calkins, M. A., Noir, J., Eldredge, J. D. & Aurnou, J. M. 2010 Axisymmetric simulations of libration-driven fluid dynamics in a spherical shell geometry. Phys. Fluids 22 (8), 086602.
Carmo, B. S., Meneghini, J. R. & Sherwin, S. J. 2010 Secondary instabilities in the flow around two circular cylinders in tandem. J. Fluid Mech. 644, 395431.
Charlton, A. J., O’Neill, A., Lahoz, W. A. & Berrisford, P. 2005 The splitting of the stratospheric polar vortex in the southern hemisphere, September 2002: dynamical evolution. J. Appl. Maths 62 (3), 590602.
Chomaz, J. M., Rabaud, M., Basdevant, C. & Couder, Y. 1988 Experimental and numerical investigation of a forced circular shear layer. J. Fluid Mech. 187, 115140.
Fletcher, L. N., Irwin, P. G. J., Orton, G. S., Teanby, N. A., Achterberg, R. K., Bjoraker, G. L., Read, P. L., Simon-Miller, A. A., Howett, C., de Kok, R., Bowles, N, Calcutt, S. B., Hesman, B. & Flasar, F. M. 2008 Temperature and composition of Saturn’s polar hot spots and hexagon. Science 319 (5859), 7981.
Früh, W. G. & Nielsen, A. H. 2003 On the origin of time-dependent behaviour in a barotropically unstable shear layer. Nonlinear Process. Geophys. 10 (3), 289302.
Früh, W. G. & Read, P. L. 1999 Experiments on a barotropic rotating shear layer. Part 1. Instability and steady vortices. J. Fluid Mech. 383, 143173.
Garate-Lopez, I., Hueso, R., Sanchez-Lavega, A., Peralta, J., Piccioni, G. & Drossart, P. 2013 A chaotic long-lived vortex at the southern pole of Venus. Nat. Geosci. 6 (4), 254257.
Godfrey, D. A. 1988 A hexagonal feature around Saturn’s north pole. Icarus 76, 335356.
Hart, J. E. & Kittelman, S. 1996 Instabilities of the sidewall boundary layer in a differentially driven rotating cylinder. Phys. Fluids 8 (3), 692696.
Henderson, R. D. 1997 Nonlinear dynamics and pattern formation in turbulent wake transition. J. Fluid Mech. 352, 65112.
Hide, R. & Titman, C. W. 1967 Detached shear layers in a rotating fluid. J. Fluid Mech. 29 (1), 3960.
Hollerbach, R. 2003 Instabilities of the Stewartson layer. Part 1. The dependence on the sign of $Ro$ . J. Fluid Mech. 492, 289302.
Hollerbach, R., Futterer, B., More, T. & Egbers, C. 2004 Instabilities of the Stewartson layer. Part 2. Supercritical mode transitions. Theor. Comput. Fluid Dyn. 18 (2), 197204.
Hussam, W. K., Thompson, M. C. & Sheard, G. J. 2011 Dynamics and heat transfer in a quasi-two-dimensional MHD flow past a circular cylinder in a duct at high Hartmann number. Intl J. Heat Mass Transfer 54 (5), 10911100.
Karniadakis, G. E. 1990 Spectral element–Fourier methods for incompressible turbulent flows. Comput. Meth. Appl. Mech. Engng 80 (1), 367380.
Karniadakis, G. E., Israeli, M. & Orszag, S. A. 1991 High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97, 414443.
Karniadakis, G. E. & Sherwin, S. J. 2005 Spectral/hp Element Methods for Computational Fluid Dynamics. (Numerical Mathematics and Scientific Computation) , Oxford Science Publications.
Kobine, J. J. 1995 Inertial wave dynamics in a rotating and precessing cylinder. J. Fluid Mech. 303, 233252.
Koch, S., Harlander, U., Egbers, C. & Hollerbach, R. 2013 Inertial waves in a spherical shell induced by librations of the inner sphere: experimental and numerical results. Fluid Dyn. Res. 45 (3), 035504.
Kong, D., Cui, Z., Liao, X. & Zhang, K. 2015 On the transition from the laminar to disordered flow in a precessing spherical-like cylinder. Geophys. Astrophys. Fluid 109 (1), 6283.
Kong, D., Liao, X. & Zhang, K. 2014 The sidewall-localized mode in a resonant precessing cylinder. Phys. Fluids 26 (5), 051703.
van de Konijnenberg, J. A., Nielsen, A. H., Juul Rasmussen, J. & Stenum, B. 1999 Shear-flow instability in a rotating fluid. J. Fluid Mech. 387, 177204.
Le Gal, P., Nadim, A. & Thompson, M. 2001 Hysteresis in the forced Stuart–Landau equation: application to vortex shedding from an oscillating cylinder. J. Fluids Struct. 15 (3), 445457.
Lopez, J. M. & Marques, F. 2010 Sidewall boundary layer instabilities in a rapidly rotating cylinder driven by a differentially corotating lid. Phys. Fluids 22 (11), 114109.
Lopez, J. M. & Marques, F. 2011 Instabilities and inertial waves generated in a librating cylinder. J. Fluid Mech. 687, 171193.
Lopez, J. M. & Marques, F. 2014 Rapidly rotating cylinder flow with an oscillating sidewall. Phys. Rev. E 89 (1), 013013.
Luz, D., Berry, D. L., Piccioni, G., Drossart, P., Politi, R., Wilson, C. F., Erard, S. & Nuccilli, F. 2011 Venus’s southern polar vortex reveals precessing circulation. Science 332 (6029), 577580.
Manasseh, R. 1992 Breakdown regimes of inertia waves in a precessing cylinder. J. Fluid Mech. 243, 261296.
Meunier, P., Eloy, C., Lagrange, R. & Nadal, F. 2008 A rotating fluid cylinder subject to weak precession. J. Fluid Mech. 599, 405440.
Montabone, L., Wordsworth, R., Aguiar, A. C. B., Jacoby, T., Manfrin, M., Read, P. L., Castrejon-Pita, A., Gostiaux, L., Sommeria, J., Viboud, S. & Didelle, H. 2010 Barotropic instability of planetary polar vortices: CIV analysis of specific multi-lobed structures. In Proceedings of the HYDRALAB III Joint Transnational Access User Meeting, Hannover. Hydralab III.
Neild, A., Ng, T. W., Sheard, G. J., Powers, M. & Oberti, S. 2010 Swirl mixing at microfluidic junctions due to low frequency side channel fluidic perturbations. Sensors Actuators B 150 (2), 811818.
Niino, H. & Misawa, N. 1984 An experimental and theoretical study of barotropic instability. J. Atmos. Sci. 41 (12), 19922011.
Noir, J., Calkins, M. A., Lasbleis, M., Cantwell, J. & Aurnou, J. M. 2010 Experimental study of libration-driven zonal flows in a straight cylinder. Phys. Earth Planet. Inter. 182 (1), 98106.
Noir, J., Jault, D. & Cardin, P. 2001 Numerical study of the motions within a slowly precessing sphere at low Ekman number. J. Fluid Mech. 437, 283299.
Piccioni, G., Drossart, P., Sanchez-Lavega, A., Hueso, R., Taylor, F. W., Wilson, C. F., Grassi, D., Zasova, L., Moriconi, M., Adriani, A., Lebonnois, S., Coradini, A., Bezard, B., Angrilli, F., Arnold, G., Baines, K. H., Bellucci, G., Benkhoff, J., Bibring, J. P., Blanco, A., Blecka, M. I., Carlson, R. W., Di Lellis, A., Encrenaz, T., Erard, S., Fonti, S., Formisano, V., Fouchet, T., Garcia, R., Haus, R., Helbert, J., Ignatiev, N. I., Irwin, P. G. J., Langevin, Y., Lopez-Valverde, M. A., Luz, D., Marinangeli, L., Orofino, V., Rodin, A. V., Roos-Serote, M. C., Saggin, B., Stam, D. M., Titov, D., Visconti, G., Zambelli, M.& the VIRTIS-Venus Express Technical Team 2007 South-polar features on Venus similar to those near the north pole. Nature 450 (7170), 637640.
Plougonven, R. & Zhang, F. 2014 Internal gravity waves from atmospheric jets and fronts. Rev. Geophys. 52 (1), 3376.
Provansal, M., Mathis, C. & Boyer, L. 1987 Bénard–von Kárman instability: transient and forced regimes. J. Fluid Mech. 182, 122.
Rabaud, M. & Couder, Y. 1983 Shear-flow instability in a circular geometry. J. Fluid Mech. 136, 291319.
Sauret, A., Cébron, D., Le Bars, M. & Le Dizès, S. 2012 Fluid flows in a librating cylinder. Phys. Fluids 24 (2), 026603.
Schaeffer, N. & Cardin, P. 2005 Quasigeostrophic model of the instabilities of the Stewartson layer in flat and depth-varying containers. Phys. Fluids 17, 104111.
Sheard, G. J. & King, M. P. 2011 Horizontal convection: effect of aspect ratio on Rayleigh number scaling and stability. Appl. Math. Model. 35 (4), 16471655.
Sheard, G. J. & Ryan, K. 2007 Pressure-driven flow past spheres moving in a circular tube. J. Fluid Mech. 592, 233262.
Sheard, G. J., Thompson, M. C. & Hourigan, K. 2004a Asymmetric structure and nonlinear transition behaviour of the wakes of toroidal bodies. Eur. J. Mech. B 23 (1), 167179.
Sheard, G. J., Thompson, M. C. & Hourigan, K. 2004b From spheres to circular cylinders: non-axisymmetric transitions in the flow past rings. J. Fluid Mech. 506, 4578.
Smith, S. H. 1984 The development of nonlinearities in the $E^{1/3}$ Stewartson layer. Q. J. Mech. Appl. Maths 37 (1), 7585.
Snyder, C., Muraki, D. J., Plougonven, R. & Zhang, F. 2007 Inertia–gravity waves generated within a dipole vortex. J. Atmos. Sci. 64 (12), 44174431.
Stewartson, K. 1957 On almost rigid rotations. J. Fluid Mech. 3, 1726.
Taylor, F. W., Beer, R., Chahine, M. T., Diner, D. J., Elson, L. S., Haskins, R. D., McCleese, D. J., Martonchik, J. V., Reichley, P. E., Bradley, S. P., Delderfield, J., Schofield, J. T., Farmer, C. B., Froidevaux, L., Leung, J., Coffey, M. T. & Gille, J. C. 1980 Structure and meteorology of the middle atmosphere of Venus: infrared remote sensing from the Pioneer Orbiter. J. Geophys. Res. 85 (A13), 79638006.
Taylor, F. W., Diner, D. J., Elson, L. S., McCleese, D. J., Martonchik, J. V., Delderfield, J., Bradley, S. P., Schofield, J. T., Gille, J. C. & Coffey, M. T. 1979 Temperature, cloud structure, and dynamics of Venus middle atmosphere by infrared remote sensing from Pioneer Orbiter. Science 205 (4401), 6567.
Thompson, M. C. & Le Gal, P. 2004 The Stuart–Landau model applied to wake transition revisited. Eur. J. Mech. B 23 (1), 219228.
Triana, S. A., Zimmerman, D. S. & Lathrop, D. P. 2012 Precessional states in a laboratory model of the Earth’s core. J. Geophys. Res. 117, B04103.
Viúdez, Á. & Dritschel, D. G. 2006 Spontaneous generation of inertia–gravity wave packets by balanced geophysical flows. J. Fluid Mech. 553, 107117.
Vo, T., Montabone, L. & Sheard, G. J. 2014 Linear stability analysis of a shear layer induced by differential coaxial rotation within a cylindrical enclosure. J. Fluid Mech. 738, 299334.
Vo, T., Montabone, L. & Sheard, G. J. 2015 Effect of enclosure height on the structure and stability of shear layers induced by differential rotation. J. Fluid Mech. 765, 4581.
Wang, S., Zhang, F. & Snyder, C. 2009 Generation and propagation of inertia–gravity waves from vortex dipoles and jets. J. Atmos. Sci. 66 (5), 12941314.
Williams, P. D., Haine, T. W. N. & Read, P. L. 2004 Stochastic resonance in a nonlinear model of a rotating, stratified shear flow, with a simple stochastic inertia–gravity wave parameterization. Nonlinear Process. Geophys. 11 (1), 127135.
Williams, P. D., Read, P. L. & Haine, T. W. N. 2003 Spontaneous generation and impact of inertia–gravity waves in a stratified, two-layer shear flow. Geophys. Res. Lett. 30 (24), 2255.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

Non-axisymmetric flows in a differential-disk rotating system

  • Tony Vo (a1), Luca Montabone (a2), Peter L. Read (a2) and Gregory J. Sheard (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.