Skip to main content
×
Home
    • Aa
    • Aa

Nonlinear analysis of convection flow in a tall vertical enclosure under non-Boussinesq conditions

  • S. A. SUSLOV (a1) and S. PAOLUCCI (a1)
Abstract

A weakly nonlinear theory, based on the combined amplitude–multiple timescale expansion, is developed for the flow of an arbitrary fluid governed by the low-Mach-number equations. The approach is shown to be different from the one conventionally used for Boussinesq flows. The range of validity of the applied analysis is discussed and shown to be sufficiently large. Results are presented for the natural convection flow of air inside a closed differentially heated tall vertical cavity for a range of temperature differences far beyond the region of validity of the Boussinesq approximation. The issue of possible resonances of two different types is noted. The character of bifurcations for the shear- and buoyancy-driven instabilities and their interaction is investigated in detail. Lastly, the energy transfer mechanisms are analysed in supercritical regimes.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 17 *
Loading metrics...

Abstract views

Total abstract views: 61 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd October 2017. This data will be updated every 24 hours.