Skip to main content
    • Aa
    • Aa

Nonlinear equilibration of a dynamo in a smooth helical flow


We investigate the nonlinear equilibration of magnetic fields in a smooth helical flow at large Reynolds number Re and magnetic Reynolds number Rm with Re[Gt ]Rm[Gt ]1. We start with a smooth spiral Couette flow driven by boundary conditions. Such flows act as dynamos, that is are unstable to growing magnetic fields; here we disregard purely hydrodynamic instabilities such as Taylor–Couette modes. The dominant feedback from a magnetic field mode is only on the mean flow and this yields a simplified ‘mean-flow system’ consisting of one magnetic mode and the mean flow, which we solve numerically. We also obtain the asymptotic structure of the equilibrated fields for weakly and strongly nonlinear regimes. In particular the field tends to concentrate in a cylindrical shell where all stretching and differential rotation is suppressed by the Lorentz force, and the fluid is in solid-body motion. This shell is bounded by thin diffusive layers where the stretching that maintains the field against diffusive decay is dominant.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 7 *
Loading metrics...

Abstract views

Total abstract views: 24 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th May 2017. This data will be updated every 24 hours.